期刊文献+

芽孢杆菌P38中乳酸脱氢酶对其产L-乳酸光学纯度的影响

Effect of lactate dehydrogenases on the optical purity of L-lactic acid produced in Bacillus sp.P38
原文传递
导出
摘要 【目的】研究芽孢杆菌(Bacillus sp.)P38中乳酸脱氢酶对其产高光学纯L-乳酸(光学纯度>99%)的影响。【方法】全基因组测序显示在该菌中存在3个乳酸代谢关键酶,分别为L-乳酸脱氢酶(L-LDH)、D-乳酸脱氢酶(D-LDH)和苹果酸或L-乳酸脱氢酶(M/L-LDH)。通过将这3个酶进行异源表达、纯化与酶学特性分析,结合Native-PAGE、实时荧光定量PCR等方法,初步确定该菌高产光学纯L-乳酸的机理。【结果】Bacillus sp.P38中L-LDH对丙酮酸的催化活性(Kcat/Km值)最高,分别是D-LDH的2.9倍和M/L-LDH的4.3倍。其中M/L-LDH主要起L-LDH的功能。Native-PAGE实验中未检测到D-LDH活性。Bacillus sp.P38所有发酵阶段ldh L的转录水平均高于ldh D和ldh M/L。【结论】L-LDH是Bacillus sp.P38产高光学纯L-乳酸的主要关键酶。 [Objective] This study is to investigate the effect of lactate dehydrogenases on the optical purity of L-lactic acid produced in Bacillus sp. P38. [Methods] Genome annotation result shows that there are three enzymes responsible for lactic acid production: L-lactate dehydrogenase(L-LDH)(encoded by ldh L), D-LDH(encoded by ldh D), and one possible malate/lactate-LDH(M/L-LDH)(encoded by ldh M/L). These enzymes were investigated both in vivo and in vitro to study the relationship between enzymatic activities, gene transcriptions and the optical purity of lactic acid. [Results] M/L-LDH was found mainly to act as L-LDH. The L-LDH catalytic efficiency toward pyruvate was 2.9-fold higher than that of D-LDH and 4.3-fold higher than that of M/L-LDH. The D-LDH activity was not detectable in Bacillus sp. P38 under active staining. The relative transcription levels of ldh L in Bacillus sp. strain P38 were much higher than those of ldh D and ldh M/L at different growth phases, and the transcription ratio of ldh L to ldh D increased from the logarithmic phase to decline phase. [Conclusion] L-LDH is the key enzyme for high optical purity of L-lactic acid produced by Bacillus sp. P38.
出处 《微生物学通报》 CAS CSCD 北大核心 2015年第8期1425-1432,共8页 Microbiology China
关键词 L-乳酸脱氢酶 芽孢杆菌 光学纯度 乳酸 L-lactic dehydrogenase Bacillus sp. Optical purity Lactic acid
  • 相关文献

参考文献16

  • 1Jiang X, Xue YF, Wang AY, et al. Efficient production of polymer-grade L-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions[J]. Bioresource Technology, 2013, 143:665-668.
  • 2Gao C, Ma CQ, Xu P. Biotechnological routes based on lactic acid production from biomass[J]. Biotechnology Advances, 2011, 29(6): 930-939.
  • 3Fan Y, Zhou C, Zhu X. Selective catalysis of lactic acid to produce commodity chemicals[J]. Catalysis Reviews, 2009, 51(3): 293-324.
  • 4Okano K, Tanaka T, Ogino C, et al. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent chievements, perspectives, and limits[J]. Applied Microbiology and Biotechnology, 2010, 85(3): 413-423.
  • 5Wang LM, Zhao B, Liu B, et al. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain[J]. Bioresource Technology, 2010, 101(20): 7908-7915.
  • 6Wang LM, Xue ZW, Zhao B, et al. Jerusalem artichoke powder: a useful material in producing high-optical-purity L-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain[J]. Bioresource Technology, 2013, 130: 174-180.
  • 7Tiina M, Karin K, Eerik J. et al. L(+)-lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073[J]. Enzyme and Microbial Technology, 2007, 39(4): 861-867.
  • 8Peng LL, Wang LM, Che CC, et all Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural[J]. Bioresource Technology, 2013, 149:169-176.
  • 9范秀容,沈萍.微生物学实验[M].北京:高等教育出版社,1999.
  • 10Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254.

二级参考文献53

  • 1李剑,唐赟,梁凤来,马建芳,刘如林.D-乳酸脱氢酶基因克隆及其表达[J].微生物学报,2004,44(4):491-495. 被引量:11
  • 2李寅,曹竹安.微生物代谢工程:绘制细胞工厂的蓝图[J].化工学报,2004,55(10):1573-1580. 被引量:25
  • 3白姝,董晓燕,孙彦.固定化米根霉生产L-乳酸的研究[J].微生物学通报,1996,23(3):140-143. 被引量:10
  • 4刘立明,邓禹,李寅,陈坚.营养和环境条件对光滑球拟酵母葡萄糖代谢速度的影响[J].应用与环境生物学报,2006,12(5):688-692. 被引量:2
  • 5李建武 萧能庆 余瑞元 等.生物化学实验原理和方法[M].北京:北京大学出版社,1997.390-396.
  • 6Bai D M,Zhao X M,Li X G,et al.Strain Improvement of Rhizopus oryzae for Over-production of L(+)-Lactic Acid and Metabolic Flux Analysis of Mutants[J].Biochem.Eng.J.,2004,18(1):41-48.
  • 7Longacre A,Reimers J,Gannon J E,et al.Flux Analysis of Glucose Metabolism in Rhizopus oryzae for the Purpose of Increasing Lactate Yields[J].Theor.Biol.,1997,21:30-39.
  • 8Skory C D.Lactic Acid Production by Rhizopus oryzae Transformants with Modified Lactate Dehydrogenase Activity[J].Appl.Microbiol.Biotechnol.,2004,64(2):237-242.
  • 9Porro D,Bianchi M M,Brambilla L,et al.Replacement of a Metabolic Pathway for Large-scale Production of Lactic Acid from Engineered Yeasts[J].Appl.Environ.Microbiol.,1999,65(9):4211-4215.
  • 10Skory C D.Lactic Acid Production by Saccharomyces cerevisiae Expressing a Rhizopus oryzae Lactate Dehydrogenase Gene[J].J.Industrial Microbiol.Biotechnol.,2003,30(1):22-27.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部