期刊文献+

SBR工艺用于焦化纳滤浓盐水生物脱氮 被引量:3

Biological denitrification for nanofiltration concentrate from coking wastewater by SBR process
原文传递
导出
摘要 以焦化废水超滤/纳滤/反渗透的“三膜法”深度处理工艺产生的高电导率纳滤(NF)浓盐水为研究对象,采用SBR脱氮工艺对NF浓盐水中有机污染物和总氮(TN)的去除性能进行了研究.实验结果表明,SBR脱氮工况为进水5min,缺氧搅拌8h,好氧曝气12 h,静置2h,出水5 min,闲置1 h 50 min,污泥浓度(MLSS)为3 000 mg/L左右时,TN平均去除率为45.45%,COD平均去除率为45.36%.通过烧杯实验研究了不同C/N比对反硝化脱氮效率的影响及其中氮形态的变化,在C/N为421时,出水TN可降低至14.8 mg/L,其中NO3--N为5.0 mg/L.研究结果证明,SBR可将电导率为12 000~ 16 000 μS/cm的焦化纳滤浓盐水TN降低至15 mg/L以下. Organic pollutants and total nitrogen (TN) removal performances in NF concentrate with high conductivity from coking wastewater generated through ultrafiltration/nanofiltration/reverse osmosis processes by SBR denitrification were investigated in this study. The results showed that the average removal effieieneies of TN and COD were 45.45% and 45.36% , respectively, under the operational conditions, namely, 5 rain of inflow, 8 h of anoxic treatment, 12 h of aerobic treatment, 2 h of sedimentation, 5 min of outflow, 1 h and 50 min of i- dle, and MLSS concentration around 3 000 mg/L. The batch tests were employed in investigation of the effects of various C/N ratios on denitrification efficiency and transformation of nitrogen form, and the results showed TN and NO3- -N in effluent could be lowered to 14.8 mg/L and 5.0 mg/L, respectively, when C/N was set at 4/1. This study finally confirmed that less than 15 mg/L of TN could be achieved after treatment for NF concentrate whose conductivity was around 12 000 - 16 000 μS/cm by SBR process.
出处 《环境工程学报》 CAS CSCD 北大核心 2015年第8期3854-3858,共5页 Chinese Journal of Environmental Engineering
关键词 焦化废水 纳滤浓水 SBR 生物脱氮 coking wastewater NF concentrate SBR biological denitrification
  • 相关文献

参考文献8

二级参考文献47

共引文献129

同被引文献61

  • 1唐文伟,曾新平,胡中华.芬顿试剂和湿式过氧化氢氧化法处理乳化液废水研究[J].环境科学学报,2006,26(8):1265-1270. 被引量:52
  • 2任源,韦朝海,吴超飞,吴锦华,谭展机.生物流化床A/O^2工艺处理焦化废水过程中有机组分的GC/MS分析[J].环境科学学报,2006,26(11):1785-1791. 被引量:87
  • 3Banerjee G. Phenol-and thiocyanate-based wastewater treatment in RBC reactor [ J ]. Journal of Environmental Engineering, 1996, 122(10) : 941-948.
  • 4Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment [ J]. Journat of Hazardous Materials, 2008, 152 (3) : 915-921.
  • 5Chang E E, Hsing H J, Chiang P C, et al. The chemical and biological characteristics of coke-ove~ wastewater by ozortatinn [ J]. Journal of Hazardous Materials, 2008, 156 ( 1- 3 ) : 560- 567.
  • 6Zhu X B, Tian J P, Chen L J. Phenol degradation by isolated bacterial strains: kinetics study and application in cokingwastewater treatment [ J ]. Journal of Chemical Technology and Biotechnology, 2012, 87(1 ) : 123-129.
  • 7Sueoka K, Satoh H, Onuki M, et al. Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke- oven wastewater detected by RNA stable-lsotope probing [ J ]. FEMS Microbiology Letters, 2009, 291 (2) : 169-174.
  • 8Ye L, Zhang T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing[ J ]. Applied Microbiology and Biotechnology, 2013, 97(6) : 2681-2690.
  • 9Zhu X B, Tian J P, Liu C, et al. Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating eoking wastewater [ J ]. Applied Microbiology and Biotechnology, 2013, 97(19) : 8767-8775.
  • 10Huddy R J, van Zyl A W, van Hille R P, et al. Characterisation of the complex microbial community associated with the ASTERTM thiocyanate biodegradation system [ J ]. Minerals Engineering, 2015, 76: 65-71.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部