期刊文献+

基于HSV空间的禁令交通标志检测方法研究

Research on ban traffic sign detection method based on HSV Space
下载PDF
导出
摘要 提出了一种基于HSV彩色空间的禁令交通标志检测方法 ,利用禁令交通标志的背景均为红色这一特性,通过统计分析计算出红色的H阈值进行颜色的分割,再利用相关满足条件筛去不符合交通标志的区域,将真正禁令标志所在的区域检测出来,便于进行下一步识别。实验表明该方法是尺度恒定的,能够在复杂的交通场景中进行可靠的禁令交通标志检测。 Proposed ban traffic sign detection method based on HSV color space, the use of the ban traffic signs are red background of this feature, through statistical analysis to calculate H threshold red color segmentation, re-use is not related to the condition screen region in line with traffic signs, prohibition signs the zone where the real detected, the next step for easy identification. Experiments show that the method is a constant scale, can be reliably detected ban traffic signs in complex traffic scenarios.
作者 和晓军 刘欢
出处 《科技视界》 2015年第24期151-152,211,共3页 Science & Technology Vision
关键词 HSV彩色空间 禁令交通标志 颜色分割 区域检测 HSV color space Ban traffic sign Color segmentation Area detection
  • 相关文献

参考文献10

  • 1De La Escalera,A.Armingol,J.M.Mata,M.Traffic sign recognition and analysis for intelligent vehicles[J].Image Vision Computing,2003,21:247-258.
  • 2Kehtarnavaz,N.Ahmad,A.Traffic sign recognition in noisy outdoor scenes[J].Intelligent Vehicles'95 Symposium,1995:460-465.
  • 3Mal donado Bascon S,Lafuente Arroyo S,Gil-Jimenes P.Road sign deteetion and recognition based on Support Vector Machines[J].IEEE Transaction on Intelligent Transportation Systems,2007,8(2):264-278.
  • 4Hoferlin B,Zitnmermann K.Towards reliable traffic sign recognition[C].In:2009 IEEE Intelligent Vehicles Sym Posium,2009,pp.324-329.
  • 5G.Piccioli,E.D.Michel,P.Parodi,and M.Campani.Robust method for road sign detection and recognition[J].Image and Vision Computing,1996,14(3):119-129.
  • 6郁梅,郁伯康.基于彩色图像的指示标志检测[J].计算机工程与应用,2000,36(4):169-172. 被引量:19
  • 7谷明琴,蔡自兴,何芬芬.形状标记图和Gabor小波的交通标志识别[J].智能系统学报,2011,6(6):526-530. 被引量:18
  • 8冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 9冈萨雷斯.数字图像处理(MATLAB版)[M].北京:电子工业出版社.2005.
  • 10许少秋.户外交通标志检测和形状识别[J].中国图象图形学报,2009,14(4):707-711. 被引量:21

二级参考文献22

  • 1郁伯康 郁梅.智能交通信息处理系统中交通信息的抽取算法[J].计算机应用研究,1998,14(4):29-31.
  • 2De la Escalera A, Armingol J M, Mata M. Traffic sign recognition and analysis for intelligent vehicles [ J]. Image and Vision Computing, 2003, 21(3) : 247-258.
  • 3Gonzalez R C, Woods R E. Digital Image Processing [ M ]. New Jersey, USA : Prentice Hall, 2002 : 295-301.
  • 4Finlayson G, Schaefer G. Hue that is invariant to brightness and gamma [ A ]. In: Proceedings of British Machine Vision Conference [ C], Manchester, UK,2001 : 303-312.
  • 5Ohba K, Sato Y, Ikeuchi K. Appearance-based visual learning and object recognition with illumination invariance [J]. Machine Vision and Applications, 2000, 12(4) : 189-196.
  • 6Latecki L J, Lakamper R. Convexity rule for shape decomposition based on discrete contour evolution [ J]. Computer Vision and Image Understanding, 1999, 73 (3) : 441-454.
  • 7Latecki L J, Lakamper R. Shape similarity measure based on correspondence of visual parts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10) : 1185-1190.
  • 8Arkin M, Chew L P, Huttenlocher D P, et al. An efficiently computable metric for comparing polygonal shapes [ J ]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1991, 13(3) : 209-216.
  • 9XIE Yuan,LIU Lifeng,LI Cuihua,et al.Unifying visual saliency with HOG feature learning for traffic sign detection. Intelligent Vehicles Symposium,2009IEEE . 2009
  • 10RUTA A,LI Y,LIU X.Robust class similarity measure for traffic sign recognition. IEEE Transactions on Intel-ligent Transportation Systems . 2010

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部