摘要
警觉度是人在一段时间里保持持续注意力的能力。为了探求在工作过程中警觉度随时间的变化规律,本文设计了以三位数加减法来诱导警觉度发生变化的实验,并通过警觉度任务(PVT)实验结合脑电测量该变化过程,提取并分析了11例受试者脑电信号排列熵(PE)这一复杂性度量,并与非线性参数样本熵(SE)做了简要比较。实验结果表明:该算法可以很好地反映警觉度下降时脑电信号的动态变化过程,且运算速度快,抗噪能力强,对脑电信号长度要求低,可以作为衡量大脑警觉度的指标。
Vigilance is defined as the ability to maintain attention for prolonged periods of time. In order to explore the variation of brain vigilance in work process, we designed addition and subtraction experiment with numbers of three digits to induce the vigilance to change, combined it with psychomotor vigilance task (PVT) to measure this process of electroencephalogram (EEG), extracted and analyzed permutation entropy (PE) of 11 cases of subjects' EEG and made a brief comparison with nonlinear parameter sample entropy (SE). The experimental results showed that: PE could well reflect the dynamic changes of EEG when vigilance decreases, and has advantages of fast arithmetic speed, high noise immunity, and low requirements for EEG length. This can be used as a measure of the brain vigilance indicators.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2015年第4期725-729,共5页
Journal of Biomedical Engineering
基金
国家自然科学基金项目资助(51377120
51007063
31271062
81222021
61172008
81171423)
天津市自然基金项目资助(13JCQNJC13900)
国家科技支撑计划项目资助(2012BAI34B02)
教育部新世纪优秀人才支持计划项目资助(NCET-10-0618)
关键词
警觉度
脑电
排列熵
vigilance
electroencephalogram
permutation entropy