期刊文献+

石墨烯狭缝受限孔道中水分子的分子动力学模拟 被引量:12

Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene
下载PDF
导出
摘要 石墨烯是一种具有广泛应用前景的纳米材料,特别是由石墨烯片层自组装形成的二维纳米通道能够应用于物质的过滤分离.本文采用分子动力学模拟方法研究了原态石墨烯/羟基改性石墨烯狭缝孔道中水分子的微观行为,模拟计算了水的界面结构性质和扩散动力学性质,所研究的石墨烯孔宽为0.6–1.5 nm.模拟结果表明,在石墨烯狭缝孔道中,水分子受限结构呈现层状分布,在超微石墨烯孔道(0.6–0.8 nm)中水分子可形成特殊的环状有序结构,石墨烯表面可诱导产生特殊的水分子界面取向.在石墨烯孔道中,水分子的扩散运动低于主体相水分子的扩散运动,羟基化石墨烯孔道可以促使水分子的扩散能力降低.对于改性石墨烯狭缝孔道,由于羟基的作用,水分子可以自发渗入0.6 nm的石墨烯孔道内.模拟所得到的受限水分子的动力学性质与水分子在石墨烯孔道内的有序结构有关.本文研究结果将有助于分析理解水分子通过石墨烯纳米通道的渗透机理,为设计基于石墨烯的纳米膜提供理论指导. Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work,molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of0.6–1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores(0.6–0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore.According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第8期1489-1498,共10页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21376116)资助项目~~
关键词 分子模拟 石墨烯 受限结构 Molecular simulation Graphene Water Confined structure
  • 相关文献

参考文献59

  • 1Pan, Y. S.; Birkedal, H.; Pattison, P.; Brown, D.; Chapuis, G. J. Phys. Chem. B 2004, 108 (20), 6458. doi: 10.1021/jp037219v.
  • 2Newsome, D. A.; Sholl, D. S. J. Phys. Chem. B 2005, 109 (15), 7239. doi: 10.1021/jp044247k.
  • 3Milischuk, A. A.; Ladanyi, B. M. J. Chem. Phys. 2011, 135 (17), 174709. doi: 10.1063/1.3657408.
  • 4Qiao, Y.; Xu, X.; Li, H. Appl. Phys. Lett. 2013, 103 (23), 233106. doi: 10.1063/1.4839255.
  • 5Han, S.; Choi, M. Y.; Kumar, P.; Stanley, H. E. Nat. Phys. 2010, 6 (9), 685. doi: 10.1038/nphys1708.
  • 6Du, F.; Qu, L. T.; Xia, Z. H.; Feng, L. F.; Dai, L. M. Langmuir 2011, 27 (13), 8437. doi: 10.1021/la200995r.
  • 7Strauss, I.; Chan, H.; Král, P. J. Am. Chem. Soc. 2014, 136 (4), 1170. doi: 10.1021/ja4087962.
  • 8Cicero, G.; Grossman, J. C.; Schwegler, E.; Gygi, F.; Galli, G. J. Am. Chem. Soc. 2008, 130 (6), 1871. doi: 10.1021/ja074418+.
  • 9Thomas, J. A.; McGaughey, A. J. H. Nano Lett. 2008, 8 (9), 2788. doi: 10.1021/nl8013617.
  • 10Mashl, R. J.; Joseph, S.; Aluru, N. R.; Jakobsson, E. Nano Lett. 2003, 3 (5), 589. doi: 10.1021/nl0340226.

二级参考文献176

  • 1杜攀,石彦茂,吴萍,陆天虹,蔡称心.1,2-萘醌修饰的碳纳米管对β-烟酰胺腺嘌呤二核苷酸电化学氧化的催化作用[J].分析化学,2006,34(12):1688-1692. 被引量:6
  • 2杜攀,石彦茂,吴萍,周耀明,蔡称心.碳纳米管的快速功能化及电催化[J].化学学报,2007,65(1):1-9. 被引量:8
  • 3吕亚芬,印亚静,吴萍,蔡称心.肌红蛋白在碳纳米管修饰电极上的直接电化学和电催化性能(英文)[J].物理化学学报,2007,23(1):5-11. 被引量:14
  • 4Charrier, A.; Coati, A.; Argunova, T.; Thibaudau, F.; Garreau, Y.; Pinchaux, R.; Forbeaux, I.; Debever, J. M.; Sauvage-Simkin, M.; Themlin, J. M. J. Appl. Phys., 2002, 92(5): 2479.
  • 5de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Solid State Commun., 2007,143(1-2): 92.
  • 6Sprinkle, M.; Soukiassian, P.; de Heer, W. A.; Berger, C.; Conrad, E. H. Phys. Status Solidi RRL, 2009, 3(6): A91.
  • 7Hannon, J. B.; Tromp, R. M. Phys. Rev. B, 2008, 77(24): 241404.
  • 8Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B, 2004, 108(52): 19912.
  • 9Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science, 2006, 312(5777): 1191.
  • 10Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater., 2008, 18(10): 1518.

共引文献221

同被引文献72

引证文献12

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部