期刊文献+

三元掺杂改性锂离子电池正极材料Li_3V_2(PO_4)_3 被引量:2

Triple-Cation-Doped Li_3V_2(PO_4)_3 Cathode Material for Lithium Ion Batteries
下载PDF
导出
摘要 以柠檬酸为螯合剂和还原剂,NH4VO3为钒源,通过溶胶-凝胶法制备了锂离子电池正极材料Li3V2(PO4)3及其三元掺杂体系Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1.分别采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、能量损失谱(EELS)、拉曼(Raman)光谱、扫描电子显微镜(SEM)、X射线能谱(EDS)、恒流充放电、循环伏安(CV)和交流阻抗谱(EIS)等技术对材料的微观结构、颗粒形貌和电化学性能进行分析.结果表明:在残余碳包覆的基础上,Na、Al、F三元掺杂有利于稳定Li3V2(PO4)3的晶体结构,进一步减少颗粒团聚和提升材料导电特性,促进第三个锂离子的脱出和嵌入,从而显著改善Li3V2(PO4)3的实用电化学性能.未经掺杂的Li3V2(PO4)3原粉在1/9C、1C和6C倍率下的可逆比容量分别为141、119和98 m Ah g–1,而三元掺杂改性材料在1/9C、1C、8C和14C倍率下的比容量分别为172、139、119和115 m Ah g–1.在1C倍率下循环300圈后,掺杂体系的比容量依然高达118 m Ah g–1,比原粉高出32.6%.值得注意的是,这种三元掺杂还使Li3V2(PO4)3的多平台放电曲线近似转变为一条斜线,显示出可能不同的储锂机制. Li3V2(PO4)3 and its triple-cation-doped counterpart Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1 were prepared by a conventional sol-gel method. The effect of Na-Al-F co-doping on the physicochemical properties, especially the electrochemical performance of Li3V2(PO4)3, were investigated by X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), electron energy loss spectroscopy(EELS), Raman spectroscopy,scanning electron microscopy(SEM), X-ray energy dispersive spectroscopy(EDS), galvanostatic charge/discharge, cyclic voltammetry(CV), and electrochemical impedance spectroscopy(EIS). It was found that combined with surface coating from residual carbon, this triple-cation co-doping stabilizes the crystalline structure of Li3V2(PO4)3, suppresses secondary particle agglomeration, and improves the electric conductivity.Moreover, reversible deinsertion/insertion of the third lithium ion at deeper charge/discharge is enabled by such doping. As a consequence, the practical electrochemical performance of Li3V2(PO4)3 is significantly improved. The specific capacity of the doped material at a low rate of 1/9C is 172 mAh·g^-1 and it maintains115 mAh·g^-1 at a rate of 14 C, while the specific capacities of the undoped sample at 1/9C and 6C are only141 and 98 mAh·g^-1, respectively. After 300 cycles at 1C rate, the doped material has a capacity of 118 mAh·g^-1, which is 32.6% higher than that of the undoped counterpart. It is also noteworthy that the multiplateau discharge curve of Li3V2(PO4)3 transforms to a slope-like curve, indicating the possibility of a different lithium intercalation mechanism after this co-doping.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第8期1513-1520,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21343011) 陕西省自然科学基金(2014JQ2-2007) 111引智计划(B14040) 中央高校基本科研业务费专项资金(xjj2014044)资助项目~~
关键词 磷酸钒锂 掺杂 溶胶-凝胶 正极材料 锂离子电池 能量存储 Lithium vanadium phosphate Doping Sol-gel Cathode material Lithiumion battery Energy storage
  • 相关文献

参考文献2

二级参考文献68

  • 1舒杰,水淼,任元龙,等.一种低温液相制备锂离子电池正极材料氟化磷酸钒锂的方法:中国,200910253511.3[P]2009-11-29.
  • 2Whittingham, M. S. Chem. Rev. 2004,104, 4271. doi: 10.1021/cr020731c.
  • 3Yang, Z.; Liu, J.; Baskaran, S.; ImhofF, C.; Holladay, J. D.Journal of the Minerals, Metals and Materials Society 2010,62,14.
  • 4Ozawa, K. Solid State Ionics 1994, 69, 212. doi: 10.1016/0167-2738(94)90411-1.
  • 5Ellis, B. L.; Lee,K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691.doi: 10.1021/cm902696j.
  • 6Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc. 1997,144, 1188. doi: 10.1149/1.1837571.
  • 7Jugovic, D.; Uskokovic, D. J. Power Sources 2009,190, 538.doi: 10.1016/j.jpowsour.2009.01.074.
  • 8Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. J. PowerSources 2003,119-121, 252.
  • 9Cabana, J.; Shirakawa, }.; Chen, G. Y.; Richardson, T. J.; Grey,C.P. Chem. Mater. 2010, 22, 1249. doi: 10.1021/cm902714v.
  • 10Ong, S. P.; Wang, L.; Kang, B.; Ceder, G. Chem. Mater. 2008,20, 1798. doi: 10.1021/cm702327g.

共引文献5

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部