期刊文献+

高倍率性能纳微结构锂离子电池正极材料0.6Li_2MnO_3-0.4LiNi_(0.5)Mn_(0.5)O_2的简易制备(英文)

Facile Synthesis of 0.6Li_2MnO_3-0.4LiNi_(0.5)Mn_(0.5)O_2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery
下载PDF
导出
摘要 采用快速共沉淀法合成了立方体的层状无钴富锂固溶体正极材料0.6Li2MnO3-0.4LiNi0.5Mn0.5O2.通过X射线衍射(XRD),X射线光电子能谱(XPS),电感耦合等离子体(ICP),扫描电子显微镜(SEM),透射电子显微镜(TEM)及电性能测试等手段对材料进行了表征.结果表明,材料具有典型的α-Na Fe O2六方层状晶体结构且具有与目标材料相似的化学组成.SEM和TEM结果表明,材料由粒径为40–200 nm的纳米颗粒组装成立方体结构.在文中给出了一个立方团聚体可能的形成机理.电化学性能测试(2.0–4.8 V电压范围内(vs Li/Li+))显示该材料具有优异的倍率性能,0.1C和10C倍率下的放电比容量分别是243和143 m Ah g–1.此外,该材料具有良好的循环稳定性,即使在大倍率测试后,0.5C倍率下循环72次仍显示出90.7%的高容量保持率.这种具有简易操作步骤和优异结果的共沉淀方法是一种经济的能够促进锂离子电池正极材料大规模应用的技术手段. The cuboid layered 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 cobalt-free lithium-rich solid-solution cathode material was synthesized by a facile quick co-precipitation method. The prepared material was characterized by X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS), inductively coupled plasma(ICP) spectroscopy, field-emission scanning electron microscopy(SEM), transmission electron microscopy(TEM), and electrochemical measurements. It was found that the as-prepared material has a typical hexagonal α-Na Fe O2 layered structure with R3^- m space group, and the chemical composition of this material is similar to the corresponding target material. SEM and TEM images reveal that the cuboid structures are assembled from nanoparticles with particle sizes of 40–200 nm. A possible formation mechanism of this cuboid aggregation is proposed. The electrochemical tests(in the voltage range 2.0–4.8 V vs Li/Li^+) indicate that the as-prepared material exhibits excellent rate capability. It deliversapproximately 243 and 143 mAh ·g^-1 corresponding to 0.1C and 10 C, respectively. Moreover, the asprepared material has good cg stability even after high rate measurement, delivering a high capacity retention of 90.7% after 72 cycles at 0.5C. This co-precipitation approach, which has facile operation processes and good results, is a economic technique that could facilitate the application of Li-rich cathode on a large scale.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第8期1527-1534,共8页 Acta Physico-Chimica Sinica
基金 四川大学科技支撑计划(2014GZ0077) 高等学校博士学科点专项科研基金(20120181120103)资助项目~~
关键词 正极材料 简易快速共沉淀 立方体结构 电化学性能 锂离子电池 Cathode material Facile quick co-precipitation Cuboid structure Electrochemical performance Li-ion battery
  • 相关文献

参考文献33

  • 1Cheng, F.; Xin, Y.; Chen, J.; Lu, L.; Zhang, X.; Zhou, H. J. Mater. Chem. A 2013, 1, 5301. doi: 10.1039/c3ta00153a.
  • 2Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Kageyama, H.; Imaizumi, J.; Shibuya, H.; Akimoto, J. J. Power Sources 2013, 221, 427. doi: 10.1016/j.jpowsour.2012.08.055.
  • 3薛庆瑞, 李建玲, 徐国峰, 侯朋飞, 晏刚, 代宇, 王新东, 高飞. 物理化学学报, 2014, 30, 1667.
  • 4Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Adv. Mater. 2010, 22, 4364. doi: 10.1002/adma.v22:39.
  • 5Cho, T. H.; Shiosaki, Y.; Noguchi, H. J. Power Sources 2006, 159, 1322. doi: 10.1016/j.jpowsour.2005.11.080.
  • 6Lei, C. H.; Bare?o, J.; Wen, J. G.; Petrov, I.; Kang, S. H.; Abraham, D. P. J. Power Sources 2008, 178, 422. doi: 10.1016/j.jpowsour.2007.11.077.
  • 7Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Electrochem. Commun. 2007, 9, 787. doi: 10.1016/j.elecom.2006.11.006.
  • 8Kim, S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Hackney, S. A.; Yoon, W.; Grey, C. P. Chem. Mater. 2004, 16, 1996. doi: 10.1021/cm0306461.
  • 9Lin, J.; Mu, D.; Jin, Y.; Wu, B.; Ma, Y.; Wu, F. J. Power Sources 2013, 230, 76. doi: 10.1016/j.jpowsour.2012.12.042.
  • 10Shojan, J.; Chitturi, V. R.; Torres, L.; Singh, G.; Katiyar, R. S. Mater. Lett. 2013, 104, 57. doi: 10.1016/j.matlet.2013.04.001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部