期刊文献+

复奇异鞍点问题预条件修正AHSS法的半收敛性 被引量:1

Semi-convergence of preconditioned modified AHSS method for complex singular saddle point problems
下载PDF
导出
摘要 提出了求解一类复奇异鞍点问题的预条件修正AHSS法。研究了所提出的新方法的半收敛性。对任意的正迭代参数,得到了所提出的新方法的半收敛定理。数值实验说明,新方法比HSS法求解鞍点问题时更有效。 This paper proposes preconditioned modified AHSS method for a class of complex singular saddle point problems.It studies the semi-convergence of the proposed new method. For any positive iteration parameters, it obtains the semiconvergence theorems of the proposed new method. Nnumerical experiments show that the effectiveness of the algorithm outperforms the HSS method.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第15期1-5,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61273311)
关键词 复奇异鞍点问题 迭代法 预条件艾尔米特和斜-艾尔米特分裂(HSS)法 半收敛性 complex singular saddle point problems iteration method Hermitian and Skew-Hermitian Splitting(HSS) method semi-convergence
  • 相关文献

参考文献2

二级参考文献17

  • 1邵新慧,沈海龙,李长军,张铁.求解鞍点问题的一般加速超松弛方法[J].数值计算与计算机应用,2006,27(4):241-248. 被引量:10
  • 2Bai Z Z. Structured preconditioners for nonsingular matrices of block two-by-two structures[J]. Math. Comput., 2006, 75: 791-815.
  • 3Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems[J]. IMA J. Numer. Anal., 2007, 27:1 23.
  • 4Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J. Sci. Comput., 2006, 28: 583-603.
  • 5Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive defitine linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24: 603-626.
  • 6Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems[J]. Numer. Math., 2004, 98: 1-32.
  • 7Bai Z Z, Pan J Y, Ng M K. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172: 762-771.
  • 8Bai Z Z, Parlett B N, Wang Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer. Math., 2005, 102: 1-38.
  • 9Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428:2900 2932.
  • 10Chen F, Jiang Y L. A generalization of the inexact parameterized Uzawa methods for saddle point problems[J]. Appl. Math. Compt., 2008, 206: 765-771.

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部