期刊文献+

基于超图正则化的概念分解及在数据表示中的应用 被引量:2

Hyper-graph regularized concept factorization algorithm and its application to data representation
原文传递
导出
摘要 针对传统图模型的流形学习无法准确表达数据间多元几何结构信息的问题,提出一种基于超图正则化的概念分解(HRCF)算法.该算法用一组具有相似属性的数据子集构建超边,建立数据间高阶关系的超图模型.通过在概念分解算法中增加超图正则项,保持数据间多元几何流形结构,提高了算法的鉴别性.在Yale库、USPS库和TDT2库上的实验表明,HRCF算法明显提高了聚类的准确率和归一化互信息,验证了算法的有效性. The manifold learning methods of the simple graph model ignored the high-order relationship between data points. Therefore, an algorithm, called hyper-graph regularized concept factorization(HRCF) is proposed. HRCF considers the high-order relationship of samples by constructing the hyper-edge in hyper-graph with a subset of data points sharing with some attribute. The concept factorization(CF) algorithm can preserve the high-order relationship of the manifold structure,by adding hyper-graph regulation term in clustering. Thus, the algorithm has more discrimination power. The experimental results on Yale, USPS and TDT2 database show that the proposed approach provides a better representation and achieves better clustering results in terms of accuracy and normalized mutual information, and verify the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2015年第8期1399-1404,共6页 Control and Decision
基金 国家自然科学基金项目(61272220 61101197 90820306) 中国博士后科学基金项目(2014M551599) 江苏省社会安全图像与视频理解重点实验室基金项目(30920130122006) 江苏省普通高校研究生科研创新计划项目(KYLX 0383)
关键词 概念分解 流形正则项 非负矩阵分解 聚类 concept factorization manifold regularization non-negative matrix factorization cluster
  • 相关文献

参考文献13

  • 1Xu W, Liu X, Gong Y H. Document clustering based on non-negative matrix factorization[C]. Annual ACM SIGIR Conference. Toronto: Sheffield, 2003: 267-273.
  • 2Duda R O, Hart P E, Stork D G. Pattern classification[M]. The 2nd ed. Hoboken: Wiley-Interscience, 2000: 5-10.
  • 3Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]. Advances in Neural Information Processing Systems. Columbia: Vancouver, 2001: 556- 562.
  • 4Xu W, Gong Y H. Document clustering by concept factorization[C]. Proc of ACM SIGIR. Sheffield, 2004: 202-209.
  • 5Liu H F, Zheng Y, Wu Z H. Locality-constrained concept factorization[C]. The Twenty-Second Int Joint Conf Artificial Intelligence. Barcelona: Morgan Kaufmann, 2011: 1378-1383.
  • 6Cai D, He X F, Han J W. Locally consistent concept factorization for document clustering[J]. IEEE Trans on Knowledge and Data Engineering, 2011, 23(6): 902-913.
  • 7Zhou D Y, Huang J Y, Bernhard S. Learning with hypergraphs: Clustering, classification and embedding[C]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2006: 1601-1608.
  • 8Hong C Q, Yu J, Li J, et al. Multi-view hyper-graph learning by patch alignment framework[J]. IEEE Trans on Neurocomputing, 2013, 118(2013): 79-86.
  • 9Yu J, Tao D C, Wang M. Adaptive hyper-graph learning and its application in image classification[J]. IEEE Trans on Image Process, 2012, 21(7): 3262-3272.
  • 10Yu J, Rui Y, Chela B. Exploiting click constraints and multiview features for image reranking[J]. IEEE Trans on Multimed, 2014, 16(1): 159-168.

同被引文献46

  • 1许小满,孙雨耕,杨山,黄汝激.超图理论及其应用[J].电子学报,1994,22(8):65-72. 被引量:32
  • 2龚劬,程绩.超图的最短路径算法[J].重庆大学学报(自然科学版),2005,28(11):106-109. 被引量:8
  • 3席运江,党延忠.基于加权超网络模型的知识网络鲁棒性分析及应用[J].系统工程理论与实践,2007,27(4):134-140. 被引量:47
  • 4谭婷婷.网络微内容推荐方法及支持系统研究[D].武汉:华中科技大学,2011.
  • 5NEWMAN M E J. Scientific collaboration networks I. Network construction and fundamental results [ J ]. Physical Review E, 2001, 64 (1): 016131.
  • 6NEWMAN M E J. Scientific collaboration networks II. Shortest paths, weighted networks, and centrality [ J ]. Physical Re- view E, 2001, 64 (1): 016132.
  • 7SHEFFI Y. Urban transportation networks: equilibrium analysis with mathematical programming methods [ M ]. NJ : Printice- Hall, 1985.
  • 8DENNING P J. The science of computing: supernetworks [ J]. American Scientist, 1985, 73: 127-129.
  • 9NAGURNEY A, DONG J. Supernetworks: decision-making for the information age [ M]. Cheltenham: Elgar Edward Publish- ing, 2002.
  • 10WAKOLBINGER T, NAGURNEY A. Dynamic supernetworks for the integration of social networks and supply chains with e- lectronic commerce : modeling and analysis of buyer-seller rela- tionships with computations [ J ]. Netnomics, 2004 ( 6 ) : 153-185.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部