摘要
GM(1,1,tα)幂次时间项模型是灰色GM(1,1)模型的推广.在灰色GM(1,1)模型和等间隔GM(1,1,tα)幂次时间项模型的基础上提出非等间隔GM(1,1,tα)幂次时间项模型,并对模型进行求解.讨论了GM(1,1,tα)幂次时间项模型的曲线形状、发展系数以及幂指数间的关系,研究了非等间隔GM(1,1,tα)幂次时间项模型的参数空间.将平均相对误差看成幂指数的函数,根据序列形状判断幂指数的范围,并利用粒子群算法求解幂指数.实际应用验证了所提出模型的有效性.
The GM(1, 1, tα) model with time power is a generalization of the grey GM(1, 1) model. Based on the grey GM(1, 1) model and the equidistance GM(1, 1, tα) model with time power, the non-equidistance GM(1, 1, tα) model with time power is proposed. The relationship of the model's curve, power's exponent and development coefficient is discussed,and the parameter space of non-equidistance GM(1, 1, tα) model with time power is studied. The average relative error is seen as a function of power's exponent. The numeric area of power's exponent can been got according to the shape of raw data. The particle swarm optimization(PSO) algorithm is used to solve the power's exponent. The practical application illustrates the effectiveness of the proposed model.
出处
《控制与决策》
EI
CSCD
北大核心
2015年第8期1514-1518,共5页
Control and Decision
基金
教育部人文社科基金项目(11YJC630155)