期刊文献+

面向非线性特征的三维CAD模型聚类 被引量:6

Nonlinear Feature Oriented 3D CAD Model Clustering
下载PDF
导出
摘要 拓扑结构是三维CAD模型的关键属性,其对应的描述符为图、树等非线性结构.针对现有聚类算法无法有效对这些非线性描述符聚类的问题,提出一种面向非线性特征的三维CAD模型聚类算法.首先将各类非线性特征统一表征为属性图,定义属性图序列的距离矩阵;然后以距离矩阵为输入,利用非线性凝聚层次聚类算法实现属性图的聚类;最后以聚类结果为学习样本,引入增量模型的动态归类方法归类新增模式,实现三维CAD模型可重用区域的有效聚类.理论分析及实验结果表明了该算法的有效性. Topology structures are critical for 3D CAD models, which are described in nonlinear features such as graphs or trees. However, the existing clustering algorithms cannot cluster these kinds of nonlinear features effectively. Aimed at this situation, this paper proposes a nonlinear feature oriented 3D CAD model clustering algorithm. Firstly, various nonlinear features are characterized as attribute graphs uniformly, and the distance matrix of attribute graphs sequence is defined; secondly, with the distance matrix as input, a nonlinear agglomerative hierarchical clustering algorithm is put forward to cluster the attribute graphs; finally, using the clustering results as learning samples, a dynamic classification algorithm is introduced to classify the new added graphs. The reusable regions of 3D CAD models are clustered effectively based on the above algorithm. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第8期1578-1586,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61163016)
关键词 非线性凝聚层次聚类 三维CAD模型 可重用区域 非线性特征 动态归类 nonlinear agglomerative hierarchical clustering 3D CAD model reusable region nonlinear feature dynamic classification
  • 相关文献

参考文献25

  • 1Dowlatshahi S, Nagaraj M. Application of group technology for design data management[J]. Computers & Industrial Engi- neering, 1998, 34(1): 235-255.
  • 2Rea H J, Corney J R, Clark D E R, et al. Commercial and business issues in the e-sourcing and reuse of mechanical components[J]. International Journal of Advanced Manufactur- ing Technology, 2006, 30(9/10): 952-958.
  • 3Jayanti S, Kalyanaraman Y, Ramani K. Shape-based clustering for 3D CAD objects: a comparative study of effectiveness[J]. Computer-Aided Design, 2009, 41(12): 999-1007.
  • 4A.nan H, Maly K, Zubair M. Navigating and browsing 3D models in 3DLIB[C]//Proceedings of the 5th National Russian Research Conference. St Petersburg, Russia: Russian Founda- tion Basic Research, 2003:216-223.
  • 5Ip C Y, Regli W C. A 3D object classifier for discriminating manufacturing proeesses[J]. Computers & Graphics, 2006, 30(6): 903-916.
  • 6Lin Lin,Xiao-Long Xie,Fang-Yu Chen.3D Model Retrieval Method Based on Affinity Propagation Clustering[J].Journal of Harbin Institute of Technology(New Series),2013,20(3):12-21. 被引量:2
  • 7石源,莫蓉,常智勇,张欣,汪伟.基于聚类的模型数据集可视化与检索[J].计算机辅助设计与图形学学报,2010,22(11):1918-1924. 被引量:5
  • 8Endoh M, Yanagimachi T, Ohbuchi R. Efficient manifold learning for 3D model retrieval by using clustering-based training sample reduction[C] //Proceedings of IEEE Interna- tional Conference on Acoustics, Speech and Signal Processing. Los Alamitos: IEEE Computer Society Press, 2012:2345-2348.
  • 9McWherter D, Peabody M, Shokoufandeh A, et al. Database techniques for archival of solid models[C]//Proceedings of the 6th ACM Symposium on Solid Modeling and Applications. New York: ACM Press, 2001 : 78-87.
  • 10Saha B, Mitra P. Dynamic algorithm for graph clustering using minimum cut tree[C]//Proceedings of IEEE International Con- ference on Data Mining. Los Alamitos: IEEE Computer Society Press, 2006:667-671.

二级参考文献59

共引文献84

同被引文献41

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部