期刊文献+

仿人脑视皮层机制的目标识别方法 被引量:5

Object recognition method imitating human brain visual cortex-like mechanisms
下载PDF
导出
摘要 针对传统方法存在目标特征提取不足和计算复杂度高等问题,从人脑视觉认知出发,提出一种仿人脑视皮层机制的目标识别方法。引入卷积神经网络,提出基于Gabor卷积核的目标边缘特征,以拟合简单细胞感受野;结合初级视皮层腹侧通路目标识别方式,模拟视皮层信息处理机制,抽取边缘图像PHOG特征来描述目标,建立PHOG特征的仿人脑皮层识别模型。采用多类SVM分类器对特征向量进行识别实验,实验结果表明,该方法减少了计算复杂度,提高了识别率。 Aiming at the shortage of feature extraction and high computation complexity in traditional methods, a method was proposed for target recognition imitating human brain visual cortex-like mechanisms inspired from the human visual perception. A convolutional neural network was introduced and the target edge characteristics based on Gabor convolution kernels were put forward to fit the simple cell's receptive field. Combined with the object recognition mode in primary visual cortex ventral path- way, a human brain visual cortex-like mechanism was simulated to extract the PHOG (pyramid histogram of oriented gradient) feature and a PHOG-based hierarchical model was established via imitating human brain visual cortical. A multi-class SVM clas- sifier was used to classify the feature vectors. Results of experiments show that the proposed method not only simplifies the cal- culation, but also improves the recognition accuracy.
出处 《计算机工程与设计》 北大核心 2015年第8期2147-2151,2216,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61372167 61379104)
关键词 视觉皮层模型 金字塔梯度方向直方图 卷积神经网络 目标 识别 visual cortex model PHOG convolutional neural network object recognition
  • 相关文献

参考文献11

  • 1Robinson E Pino, Michael Moore, Jason Rogers, et al. A co- lumnar V1/V2 visual cortex model and emulation using a PS3 Cell BE array [C] //The International Joint Conference on Neural Networks, 2011: 1667-1674.
  • 2Ciresan D, Ueli Meier, Juergen Schmidhuber. Muhicolumn deep neural networks for image classification [C]//IEEE Com- puter Society Conference on Computer Vision and Pattern Re- cognition, 2012 : 3642-3649.
  • 3Qiao Hong, Li Yinlin, Tang Tang, et al. Introducing memo- ry and association mechanism into a biologically inspired visual model [J]. IEEE Transactions on Cybernetics, 2013, 44 (9) : 1485-1496.
  • 4Mutch J, Lowe D G. Object class recognition and localization using sparse features with limited receptive fields [J]. Interna- tional Journal of Computer Vision, 2008, 80 (1): 45-57.
  • 5Muja M, Lowe D G. Fast matching of binary features [C] // Ninth Conference on Computer and Robot Vision, 2012: 404-410.
  • 6Duraid Abdullah, Iqbal Murtza, Asifullah Khan. Feature ex- traction and reduction strategy based on pyramid HOG and hie- rarchal exploitation of cortex like mechanisms [C] //16th In- ternational Multi Topic Conference, 2013: 160-165.
  • 7Jia Cheng Ni, Yue Lei Xu. SAP, automatic target recognition based on a visual cortical system [C] //International Congress on Image and Signal Processing, 2013: 778-787.
  • 8Norbert Kruger, Peter Janssen, Sinan Kalkan, et al. Deep hierarchies in the primate visual cortex: What can we learn for computer vision [J]. Pattern Analysis and Machine Intelli- gence, 2013, 35 (8): 1847-1871.
  • 9Cheng Y, Su S Z, Li S Z. Combine histogram intersection kernel with linear kernel for pedestrian elassfieation [C] // IET International Conference on Information Science and Con trol Engineering, 2012: 1-3.
  • 10Huang Lihong, Chen Xiangan, Gao Zhiyong, et al. Human action recognition by imitating the simple cells of visual cortex [C] //International Conference on Intelligent Computation and Bio-Medical Instrumentation, 2011: 313-320.

同被引文献25

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部