期刊文献+

基于原型生成技术的手写体数字识别 被引量:7

Handwriting digit recognition based on prototype generation technique
下载PDF
导出
摘要 为进一步从已有实验方法中提高手写体数字识别识别率,降低数字识别的时间,提出基于原型生成技术的实验方案。该技术包含两部分的处理过程,第一阶段应用自适应共振理论1(ART1)从原有训练集中选择概括全部特性的原型集合的解决方案,第二阶段利用自然演化理论的执行生成最优原型,使目标函数最小化;采用k-NN(k-nearest neighbor)邻近算法进行手写体分类识别。在ART1的基础上,利用自然演化策略的方式改变原型生成技术对MNIST数据库的识别,验证了该技术能够很好权衡识别准确率、分类速度和手写体风格变化的稳定性。 To improve the recognition rate of handwriting digit recognition and reduce the time of digital identification of the existing experimental methods, a prototype generation technique was presented. Prototype generation was approached as a two- stage process. In the first stage, an adaptive resonance theory 1 (ART1) based algorithm was used to select an effective initial solution, while in the second one, the natural evolution strategy was used to generate the best prototypes, and the objective function was minimized. The classification task was performed using the k-nearest neighbor classifier. The prototype generation technology was changed by using natural evolution strategy approach based on ART1 to identify the MNIST database. The pro- posed technique was verified to be able to represent a good trade-off among accuracy, classification speed and robustness to hand- writing style changes.
作者 任美丽 孟亮
出处 《计算机工程与设计》 北大核心 2015年第8期2211-2216,共6页 Computer Engineering and Design
关键词 手写体数字识别 原型生成 k-NN邻近 自适应共振理论 自然演化策略 handwriting digit recognition prototype generation k-nearest neighbor adaptive resonance theory natural evolu-tion strategy
  • 相关文献

参考文献12

  • 1Angiulli F. Fast nearest neighbor condensation for large data- sets classification [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19 (11): 1450-1464.
  • 2Chang R, Pei Z, Zhang C. A modified editing k-nearest neigh- bor rule [J]. Journal of Computers, 2011, 6 (7): 1493-1500.
  • 3Beiping H, Wen Z. Fast human detection using motion detec- tion and histogram of oriented gradients [J]. Journal of Com- puters, 2011, 6 (8): 1597-1604.
  • 4D6niz O, Bueno G, Salido J, et al. Face recognition using his- tograms of oriented gradients [J]. Pattern Recognition Let- ters, 2011, 32 (12): 1598-1603.
  • 5Pekalska E, Duin RP. Beyond traditional kernels: Classifica- tion in two dissimilarity-based representation spaces [J]. IEEE Transactions on Systems, Man, and Cybernetics, PartC: Ap- plications and Reviews, 2008, 38 (6): 729-744.
  • 6Cunningham P. A taxonomy of similarity mechanisms for ease- based reasoning [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (11): 1532-1543.
  • 7Ciresan DC, Meier U, Gambardella LM, et al. Deep big sim- ple neural nets excel on handwritten digit recognition IN]. CoRR, abs/1003. 0358, 2010.
  • 8Gil-Pita R, Yao X. Evolving edited K-nearest neighbor classi- fiers [J]. International Journal of Neural Systems, 2008, 18 (6) : 459-467.
  • 9Garcia S, Derrac J, Cano JR, et al. Prototype selection for nearest neighbor classificatiom taxonomy and empirical study [J]. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 2012, 34 (3): 417-435.
  • 10Back T. Evolutionary algorithms in theory and practice: Evo- lution strategies, evolution programming, genetic algorithms [M]. New York.. Oxford University Press, 2011.

同被引文献42

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部