期刊文献+

基于拟合优度赋权的农网用电需求组合预测 被引量:3

Power Demand Combination Forecasting of Rural Power Network Based on Goodness of Fit Empowerment
原文传递
导出
摘要 在我国新型城镇化和美丽乡村宏观政策的推动下,城乡一体化进程加快,带动农网用电需求快速增长。分析新型城镇化和美丽乡村背景下的农网用电需求,对建立和完善乡镇电网发展模式和建设标准具有重要现实意义。结合新型城镇化和美丽乡村背景下的农网用电需求特点,建立了城镇用电需求评估指标体系,提出一种基于全样本空间的类比预测法,将用电需求预测从单一维度扩展到多维空间,适用于目前城镇化过程中电力数据和经济社会发展信息交汇的大数据环境。在此基础上,综合回归分析法、灰色模型、人均用电量法等3种经典预测方法,设计了基于拟合优度赋权的组合预测算法,实现了权重的自动优化调整,算例结果表明组合预测算法提高了预测的精度和可靠性。 With the promotion of the new urbanization and beautiful countryside macro policy in China, the process of the urban-rural integration accelerates, which drives the fast increase in the demand of the rural power network. In the background of the new urbanization and beautiful countryside, the analysis of the demand of the rural power network has the important practical significance to the establishment and improvement of the development model and construction standard of rural power network. Combining the power demand characteristics of rural power network in the background of the new urbanization and beautiful countryside, the power demand evaluation indexes for town are established and the analogy forecasting method is proposed based on full sample space, which could extend the load forecasting from a single dimension to hyperspace. It is applicable to the big data environment where the power data intersected the economic and social development in the process of urbanization. On this basis, this paper synthesizes the three classic forecasting methods, including the regression analysis method, the grey model and the per capita consumption method, and proposes a combination forecasting method based on the goodness of fit empowerment, which could realize the automatic optimization adjustment of weight. The numerical example results show that the combination forecasting method can improve the accuracy and reliability of the forecasting results.
出处 《电力建设》 北大核心 2015年第8期55-60,共6页 Electric Power Construction
关键词 用电需求预测 全样本空间 组合预测 拟合优度 新型城镇化 power demand forecasting full sample space combination forecasting goodness of fit new urbanization
  • 相关文献

参考文献15

二级参考文献66

共引文献774

同被引文献33

引证文献3

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部