期刊文献+

Genomics progress will facilitate molecular breeding in soybean 被引量:9

Genomics progress will facilitate molecular breeding in soybean
原文传递
导出
摘要 It has been suggested that the soybean (Glycine max [L.] Merr.) currently cultivated in commercial agriculture was domesticated from the wild soybean (G. soja Sieb. & Zucc.) in China approximately 5,000 years ago. Because of its high protein and oil content, cultivated soybean has become a major economic crop by providing 69% and 30% of the world's plant protein and oil. Soybean breeders have made considerable efforts to develop elite varieties that can meet this ever-increasing demand. However, over the last century, advances in soybean breeding have progressed slowly. One of the major reasons is the genetic bottlenecks caused by the domestication practice of using seeds from only a small number of plants with desirable traits to propagate each new generation during introduction and im- provement [1]. Well-established genome sequences and a better understanding of the underlying genetic bases of agronomically important traits will expedite the progress of marker-assisted breeding programs for soybean. It has been suggested that the soybean(Glycine max[L.]Merr.)currently cultivated in commercial agriculture was domesticated from the wild soybean(G.soja Sieb.&Zucc.)in China approximately 5,000 years ago.Because of its high protein and oil content,cultivated soybean has become a major economic crop by providing 69%and 30%of the world’s plant protein and oil.Soybean breeders have
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2015年第8期813-815,共3页 中国科学(生命科学英文版)
  • 相关文献

参考文献1

二级参考文献39

  • 1Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, LM., Delano, D., Zhang, L., Schroth, G.P., Gunderson, K.L., Fan, J.B., Shen, R., 2011. High density DNA methylation array with single CpG site resolution. Genomics 98, 288--295.
  • 2Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A.V., Tariq, M., Paszkowski, J., 2004. Chromatin techniques for plant cells. Plant J. 39, 776-789.
  • 3Cannon, S.B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., Wang, X.H., Mudge, J., Vasdewani, J., Scheix, T., Spannagl, M., Monaghan, E., Nicholson, C., Humphray, S.J., School, H., Mayer, K.F.X., Rogers, J., Quetier, E, Oldroyd, G.E., Debelle, E, Cook, D.R., Retzel, E.E, Roe, B.A., Town, C.D., Tabata, S., van de Peer, Y., Young, N.D., 2006. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc. Natl. Acad. Sci. USA 103, 14959--14964.
  • 4Cokus, S.J., Feng, S., Zhang, X.C., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.E, Pellegrini, M., Jacobsen, S.E., 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215--219.
  • 5Du, J.C., Grant, D., Tian, Z.X., Nelson, R.T., Zhu, L.C., Shoemaker, R.C., Ma, J.X., 2010. SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11, 113.
  • 6Findley, S.D., Cannon, S., Varala, K., Du, J.C., Ma, J.X., Hudson, M.E., Birchler, J.A., Stacey, G., 2010. A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185, 727-744.
  • 7Ge, Y., Li, Y., Zhu, Y., Bai, X., Lv, D., Guo, D., Ji, W., Cai, H., 2010. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol. 10, 153.
  • 8Gendrel, A.V., Lippman, Z., Martienssen, R, Colot, V., 2005. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213--218.
  • 9Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., Stam, M., 2007. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, l 1.
  • 10Huebert, D.J., Kamal, M., O'Donovan, A., Bernstein, B.E., 2006. Genome-wide analysis of histone modifications by ChiP-on-chip. Methods 40, 365--369.

共引文献9

同被引文献53

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部