摘要
Let C be an n-dimensional sphere with diameter 1 and center at the origin in E<sup>n</sup>. The view-obstruction problem for n-dimensional spheres is to determine a constant v(n) to be the lower bound of those α for which any half-line L, given by x<sub>i</sub>=a<sub>i</sub>t(i=1, 2,...,n) where parameter t≥0 and a<sub>i</sub>(i=1, 2,...,n) are positive real numbers, intersects Δ(C, α)={αC+(m<sub>1</sub>+(1/2), m<sub>2</sub>+(1/2),…,m<sub>n</sub>+(1/2)):m<sub>1</sub>, m<sub>2</sub>,…m<sub>n</sub> nonnegative integers}. In this paper, for n=3, the following result is proved. For α】1/5<sup>1/2</sup> we have that any half-line L, given by x<sub>i</sub>=a<sub>i</sub>t(i=1,2,3), intersects Δ(C, α), where parameter t≥0 and a<sub>i</sub>(i=1,2,3) are positive real numbers such that |a|+|b|+|c|≠3 whenever aa<sub>1</sub>+ba<sub>2</sub>+ca<sub>3</sub>=0 for three integers a, b, c.
Let C be an n-dimensional sphere with diameter 1 and center at the origin in E<sup>n</sup>. The view-obstruction problem for n-dimensional spheres is to determine a constant v(n) to be the lower bound of those α for which any half-line L, given by x<sub>i</sub>=a<sub>i</sub>t(i=1, 2,...,n) where parameter t≥0 and a<sub>i</sub>(i=1, 2,...,n) are positive real numbers, intersects Δ(C, α)={αC+(m<sub>1</sub>+(1/2), m<sub>2</sub>+(1/2),…,m<sub>n</sub>+(1/2)):m<sub>1</sub>, m<sub>2</sub>,…m<sub>n</sub> nonnegative integers}. In this paper, for n=3, the following result is proved. For α>1/5<sup>1/2</sup> we have that any half-line L, given by x<sub>i</sub>=a<sub>i</sub>t(i=1,2,3), intersects Δ(C, α), where parameter t≥0 and a<sub>i</sub>(i=1,2,3) are positive real numbers such that |a|+|b|+|c|≠3 whenever aa<sub>1</sub>+ba<sub>2</sub>+ca<sub>3</sub>=0 for three integers a, b, c.