期刊文献+

On the Order of a Class of Meromorphic Functions

On the Order of a Class of Meromorphic Functions
原文传递
导出
摘要 This paper proves the following result:Let f(z) be a meromorphic function in the x-plane with a deficient value,and Δ(θ<sub>k</sub>)(k=1,2,...,q;0(?)θ<sub>1</sub>【θ<sub>2</sub>【...【θ<sub>q</sub>【θ<sub>q+1</sub>=θ<sub>1</sub>+2π) be q rays (1(?)q【∞) starting at the origin,and let n(?)3 be an integer such that for any given positive number ε,0【ε【π/2, (?) where v is a constant independent of ε.If μ【∞,then we have λ(?)π/ω+v, where μ and λ denote the lower order and order of f(z),respectively,ω=min{θ<sub>k+1</sub>-θ<sub>k</sub>;1(?)k(?)q}, and n(E,f=a) is the number of zeros of f(z)-a in E with multiple zeros being counted with their multiplicities. This paper proves the following result:Let f(z) be a meromorphic function in the x-plane with a deficient value,and Δ(θ<sub>k</sub>)(k=1,2,...,q;0(?)θ<sub>1</sub>&lt;θ<sub>2</sub>&lt;...&lt;θ<sub>q</sub>&lt;θ<sub>q+1</sub>=θ<sub>1</sub>+2π) be q rays (1(?)q&lt;∞) starting at the origin,and let n(?)3 be an integer such that for any given positive number ε,0&lt;ε&lt;π/2, (?) where v is a constant independent of ε.If μ&lt;∞,then we have λ(?)π/ω+v, where μ and λ denote the lower order and order of f(z),respectively,ω=min{θ<sub>k+1</sub>-θ<sub>k</sub>;1(?)k(?)q}, and n(E,f=a) is the number of zeros of f(z)-a in E with multiple zeros being counted with their multiplicities.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第2期191-204,共14页 数学学报(英文版)
关键词 Meromorphic function Order Meromorphic function Order
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部