期刊文献+

The Riemannian Geometry of Superminimal Surfaces in Complex Space Forms 被引量:3

The Riemannian Geometry of Superminimal Surfaces in Complex Space Forms
原文传递
导出
摘要 This paper deals with superminimal surfaces in complex space forms by using the Frenet framing. We formulate explicitly the length squares of the higher fundamental forms and the higher curvatures for superminimal surfaces in terms of the metric of the surface and the Khler angle of the immersion. Particularly, some curvature pinching theorems for minimal 2-spheres in a complex projective space are given and a new characterization of the Veronese sequence is obtained. This paper deals with superminimal surfaces in complex space forms by using the Frenet framing. We formulate explicitly the length squares of the higher fundamental forms and the higher curvatures for superminimal surfaces in terms of the metric of the surface and the Khler angle of the immersion. Particularly, some curvature pinching theorems for minimal 2-spheres in a complex projective space are given and a new characterization of the Veronese sequence is obtained.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第3期298-313,共16页 数学学报(英文版)
基金 Supported by the National Natural Science Fundation of China.
关键词 Superminimal surface Frenct flame Higher curvature function Veronese sequence Superminimal surface Frenct flame Higher curvature function Veronese sequence
  • 相关文献

同被引文献2

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部