摘要
For finite rank operators in a commutative subspace lattice algebra alg(?)we introduce the concept of correlation matrices,basing on which we prove that a finite rank operator in alg(?)can be written as a finite sum of rank-one operators in alg(?),if it has only finitely many different correlation matrices.Thus we can recapture the results of J.R.Ringrose,A.Hopenwasser and R.Moore as corollaries of our theorems.
For finite rank operators in a commutative subspace lattice algebra alg(?)we introduce the concept of correlation matrices,basing on which we prove that a finite rank operator in alg(?)can be written as a finite sum of rank-one operators in alg(?),if it has only finitely many different correlation matrices.Thus we can recapture the results of J.R.Ringrose,A.Hopenwasser and R.Moore as corollaries of our theorems.
基金
Research supported by NSF of China