期刊文献+

Injective Homogeneity and Homological Homogeneity of the Ore Extensions

Injective Homogeneity and Homological Homogeneity of the Ore Extensions
原文传递
导出
摘要 In this paper we prove that under some natural conditions, the Ore extensions and skew Laurent polynomial rings are injectively homogeneous or homologically homogeneous if so are their coefficient rings. Specifically, we prove that if R is a commutative Noetherian ring of positive characteristic, then A<sub>n</sub>(R), the n<sup>th</sup> Weyl algebra over R, is injectively homogeneous (resp. homologically homogeneous) if R has finite injective dimension (resp. global dimension). In this paper we prove that under some natural conditions, the Ore extensions and skew Laurent polynomial rings are injectively homogeneous or homologically homogeneous if so are their coefficient rings. Specifically, we prove that if R is a commutative Noetherian ring of positive characteristic, then A<sub>n</sub>(R), the n<sup>th</sup> Weyl algebra over R, is injectively homogeneous (resp. homologically homogeneous) if R has finite injective dimension (resp. global dimension).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1997年第4期433-442,共10页 数学学报(英文版)
关键词 Injectively homogeneous ring Homologically homogeneous ring Ore extension Quotient ring Injectively homogeneous ring Homologically homogeneous ring Ore extension Quotient ring
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部