期刊文献+

Asymptotic Behavior of Solutions for a Class of Retarded Difference Equations 被引量:4

Asymptotic Behavior of Solutions for a Class of Retarded Difference Equations
原文传递
导出
摘要 Consider the retarded difference equation x<sub>n</sub>-x<sub>n-1</sub>=F(-f(x<sub>n</sub>)+g(x<sub>n</sub>-k)), (*) where k is a positive integer, F,f,g:R→R are continuous, F and f are increasing on R, and uF(u)】0 for all u≠0. We show that when f(y)≥g(y)(resp. f(y)≤g(y)) for y∈R, every solution of (*) tends to either a constant or -∞ (resp. ∞) as n→∞. Furthermore, if f(y)≡g(y) for y∈R, then every solution of (*) tends to a constant as n→∞. Consider the retarded difference equation x<sub>n</sub>-x<sub>n-1</sub>=F(-f(x<sub>n</sub>)+g(x<sub>n</sub>-k)), (*) where k is a positive integer, F,f,g:R→R are continuous, F and f are increasing on R, and uF(u)&gt;0 for all u≠0. We show that when f(y)≥g(y)(resp. f(y)≤g(y)) for y∈R, every solution of (*) tends to either a constant or -∞ (resp. ∞) as n→∞. Furthermore, if f(y)≡g(y) for y∈R, then every solution of (*) tends to a constant as n→∞.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1998年第3期419-422,共4页 数学学报(英文版)
基金 Project supported by NNSF (19601016) of China NSF (97-37-42) of Hunan
关键词 Retarded difference equation Asymptotic behavior Retarded difference equation Asymptotic behavior
  • 相关文献

同被引文献2

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部