期刊文献+

On the Isomorphic Classes of Hopf-Galois Extensions with Normal Bases over a Commutative Ring

On the Isomorphic Classes of Hopf-Galois Extensions with Normal Bases over a Commutative Ring
原文传递
导出
摘要 In this paper we consider the isomorphic classes of H-Galois extensions with the normal basis property over a fixed commutative ring B for a finite Hopf algebra H.The result is that when H is cocommutative,then the above isomorphic classes and the 2-nd cohomology group H^2(L~*,U) are isomorphic as groups under the product defined in this paper,where L=BH,L~*=Hom_B(L,B). In this paper we consider the isomorphic classes of H-Galois extensions with the normal basis property over a fixed commutative ring B for a finite Hopf algebra H.The result is that when H is cocommutative,then the above isomorphic classes and the 2-nd cohomology group H^2(L~*,U) are isomorphic as groups under the product defined in this paper,where L=BH,L~*=Hom_B(L,B).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1999年第4期515-524,共10页 数学学报(英文版)
基金 Supported by the NNSF of China
关键词 Hopf-Galois extentions Cohomology group Hopf-Galois extentions Cohomology group
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部