摘要
Let f(x)be a continued fraction with elements a<sub>n</sub>x,where coefficients a<sub>n</sub> are positive alge- braic numbers.Using the criterion of[1]for any nonzero real algebraic numbers α<sub>1</sub>,...,α<sub>s</sub> with distinct absolute values the algebraic independence of the values f(α<sub>1</sub>),...,f(α<sub>s</sub>)is proved under certain as- sumption concerning only with a<sub>n</sub>.For some transcendental numbers ζ the algebraic independence of values f(ζ<sup>j</sup>)(j∈Z)is also established.
Let f(x)be a continued fraction with elements a<sub>n</sub>x,where coefficients a<sub>n</sub> are positive alge- braic numbers.Using the criterion of[1]for any nonzero real algebraic numbers α<sub>1</sub>,...,α<sub>s</sub> with distinct absolute values the algebraic independence of the values f(α<sub>1</sub>),...,f(α<sub>s</sub>)is proved under certain as- sumption concerning only with a<sub>n</sub>.For some transcendental numbers ζ the algebraic independence of values f(ζ<sup>j</sup>)(j∈Z)is also established.
基金
Supported by the National Natural Science Foundation of China