摘要
As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the ring [[R<sup>(</sup>S.≤]] of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R). and (2) if (S. ≤) also satisfies the condition that 0≤s for any s∈S, then the ring [[R<sup>(</sup>S.≤]] is weakly PP if and only if R is weakly PP.
As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the ring [[R<sup>(</sup>S.≤]] of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R). and (2) if (S. ≤) also satisfies the condition that 0≤s for any s∈S, then the ring [[R<sup>(</sup>S.≤]] is weakly PP if and only if R is weakly PP.
基金
Research supported by National Natural Science Foundation of China. 19501007
Natural Science Foundation of Gansu. ZQ-96-01