期刊文献+

Hua's Theorem on Prime Squares in Short Intervals 被引量:2

Hua's Theorem on Prime Squares in Short Intervals
原文传递
导出
摘要 It is proved that every large integer N≡5(mod24)can be written as N=p<sub>1</sub><sup>2</sup>+…+p<sub>5</sub><sup>2</sup> with each prime p<sub>j</sub> satisfying |p<sub>J</sub>-(N/5|)<sup>1/2</sup>≤N<sup>11/23</sup>.This gives a short interval version of Hua’s theorem on the quadratic Waring-Goldbach problem It is proved that every large integer N≡5(mod24)can be written as N=p<sub>1</sub><sup>2</sup>+…+p<sub>5</sub><sup>2</sup> with each prime p<sub>j</sub> satisfying |p<sub>J</sub>-(N/5|)<sup>1/2</sup>≤N<sup>11/23</sup>.This gives a short interval version of Hua’s theorem on the quadratic Waring-Goldbach problem
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2000年第4期669-690,共22页 数学学报(英文版)
基金 Supported by MCSEC and the National Natural Science Foundation (Grant No. 19701019) Supported by MCSFC and the National Natural Science Foundation
关键词 Waring-Goldbach problem Hua’s theorem PRIME Circle method Waring-Goldbach problem Hua’s theorem Prime Circle method
  • 相关文献

参考文献1

二级参考文献18

  • 1Ming-Chit Liu,Kai-Man Tsang.Small prime solutions of some additive equations[J]. Monatshefte für Mathematik . 1991 (2)
  • 2Hua,L .K.Someresultsintheadditiveprimenumbertheory,Quart.J. Math.Oxford . 1938
  • 3Hua,L .K.AdditiveTheoryofPrimeNumbers,RhodeIsland:Amer. Math.Soc . 1965
  • 4Jia,C .H.Threeprimetheoremsinshortintervals(VII),ActaMath. Sin . 1994
  • 5LiuMC,TsangKM.Smallprimesolutionsofsomeadditiveequations. MonatshMath . 1991
  • 6Prachar,K. Primzahlverteilung . 1957
  • 7Wright,E .M.Therepresentationofanumberasasumofthreeorfoursquares,Proc. LondonMath.Soc . 1937
  • 8Vinogradov,I .M.Estimationofcertaintrigonometricsumswithprimevariables,Izv.Acad.Nauk,USSR ,Ser. Matatu . 1939
  • 9Liu,J .Y,Zhan,T.EstimationofexponentialsumsoverprimesinshortintervalsI. Monatshefte fur Mathematik .
  • 10Bauer,C.Anoteonfiveprimesquares. .

共引文献7

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部