期刊文献+

A Note on Hermitian-Einstein Metrics on Parabolic Stable Bundles

A Note on Hermitian-Einstein Metrics on Parabolic Stable Bundles
原文传递
导出
摘要 Let M be a compact complex manifold of complex dimension two with a smooth K hler metric and D a smooth divisor on . If E is a rank 2 holomorphic vector bundle on M with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E’=E|<sub> \D</sub> compatible with the parabolic structure, whose curvature is square integrable. Let M be a compact complex manifold of complex dimension two with a smooth K hler metric and D a smooth divisor on . If E is a rank 2 holomorphic vector bundle on M with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E’=E|<sub> \D</sub> compatible with the parabolic structure, whose curvature is square integrable.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2001年第1期77-80,共4页 数学学报(英文版)
基金 Supported by the NSF of China
关键词 Hermitian-Einstein metric Parabolic stable bundle Kahler manifold Hermitian-Einstein metric Parabolic stable bundle Kahler manifold
  • 相关文献

参考文献5

  • 1L. M. Sibner,R. J. Sibner.Classification of singular Sobolev connections by their holonomy[J].Communications in Mathematical Physics.1992(2)
  • 2O. Biquard.Sur les Fibrés Paraboliques sur une Surface Complexe[].Journal of the London Mathematical Society.1996
  • 3Biswas,Indranil.Parabolic bundles as orbifold bundles[].Duke Mathematical Journal.1997
  • 4J. Li.Hermitian-Einstein metrics and Chern number inequality on parabolic stable bundles over Kahler manifolds[].Comm Anal Geom.
  • 5C. T. Simpson.Constructing variation of Hodge structure using Yang-Mills theory and applications to uniformization[].Journal of the American Mathematical Society.1998

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部