摘要
Let M be a compact complex manifold of complex dimension two with a smooth K hler metric and D a smooth divisor on . If E is a rank 2 holomorphic vector bundle on M with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E’=E|<sub> \D</sub> compatible with the parabolic structure, whose curvature is square integrable.
Let M be a compact complex manifold of complex dimension two with a smooth K hler metric and D a smooth divisor on . If E is a rank 2 holomorphic vector bundle on M with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E’=E|<sub> \D</sub> compatible with the parabolic structure, whose curvature is square integrable.
基金
Supported by the NSF of China