期刊文献+

Cubic Diophantine Inequalities

Cubic Diophantine Inequalities
原文传递
导出
摘要 Let λ<sub>1</sub>, λ<sub>2</sub>,...,λ<sub>7</sub> be real numbers satisfying λ<sub>i</sub>≥1. In this paper, we prove there are integers x<sub>1</sub>,...,x<sub>7</sub> such that the inequalities |λ<sub>1</sub>x<sub>1</sub><sup>3</sup>+λ<sub>2</sub>x<sub>2</sub><sup>3</sup>+...+λ<sub>7</sub>x<sub>7</sub><sup>3</sup>|【1 and 0【sum from i=1 to7(λ<sub>i</sub>|x<sub>i</sub>]<sup>3</sup> (λ<sub>1</sub>λ<sub>2</sub>…λ<sub>7</sub>)<sup>89814</sup>) hold simultaneously. Let λ<sub>1</sub>, λ<sub>2</sub>,...,λ<sub>7</sub> be real numbers satisfying λ<sub>i</sub>≥1. In this paper, we prove there are integers x<sub>1</sub>,...,x<sub>7</sub> such that the inequalities |λ<sub>1</sub>x<sub>1</sub><sup>3</sup>+λ<sub>2</sub>x<sub>2</sub><sup>3</sup>+...+λ<sub>7</sub>x<sub>7</sub><sup>3</sup>|&lt;1 and 0&lt;sum from i=1 to7(λ<sub>i</sub>|x<sub>i</sub>]<sup>3</sup> (λ<sub>1</sub>λ<sub>2</sub>…λ<sub>7</sub>)<sup>89814</sup>) hold simultaneously.
作者 Hong Ze LI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2001年第1期153-160,共8页 数学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 19671051)
关键词 Diophantine inequality Cubic equation Non-trivial solution Diophantine inequality Cubic equation Non-trivial solution
  • 相关文献

参考文献1

  • 1Trevor D. Wooley.Breaking classical convexity in Waring’s problem: Sums of cubes and quasi-diagonal behaviour[J].Inventiones Mathematicae.1995(1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部