期刊文献+

A Characterization for the Gevrey-Sobolev Wave Front Set

A Characterization for the Gevrey-Sobolev Wave Front Set
原文传递
导出
摘要 In this note, we use the so-called microlocal energy method to give a characterization of the Gevrey-Sobolev wave front set WF<sub>(</sub>H<sub>T,σ</sub><sup>S</sup> (u), which will be useful in the study of non-linear microlocal analysis in Gevrey classes. In this note, we use the so-called microlocal energy method to give a characterization of the Gevrey-Sobolev wave front set WF<sub>(</sub>H<sub>T,σ</sub><sup>S</sup> (u), which will be useful in the study of non-linear microlocal analysis in Gevrey classes.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2001年第2期295-300,共6页 数学学报(英文版)
基金 Research supported by grants of the Natural Science Foundation of China the State Education Committee and the Huacheng Foundation.
关键词 Gevrey-Sobolev space Wave front set Microlocal energy method Gevrey-Sobolev space Wave front set Microlocal energy method
  • 相关文献

参考文献7

  • 1Mizohata,S. On the Cauchy Problem . 1985
  • 2Chen H.Gevrey-hypoellipticity for a class of parabolic type operators[].JPDE.1990
  • 3Hormander,L.Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficient[].Communications in Pure Applied Mathematics.1971
  • 4Rodino,L. Linear Partial Differential Operators in Gevrey Classes . 1993
  • 5K. Kajitani,S. Wakabayashi.Microhyperbolic operators in Gevrey classes[].Publ RIMS Kyoto Univ.1989
  • 6S. Mizohata.On the Cauchy problem for hyperbolic equations and related problems-micro-local energy method[].Proc Taniguchi Intern Symp on "Hyperbolic Equations and Related Topics".1984
  • 7H. Chen,L. Rodino.Micro-elliptic Gevrey regularity for nonlinear PDE[].Boll Un Mat Ital.1996

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部