摘要
Let F be an algebracially closed field of characteristic p】2, and L be the p<sup>n</sup>-dimensional Zassenhaus algebra with the maximal invariant subalgebra L<sub>0</sub> and the standard filtration {L<sub>i</sub>}|<sub>i=-1</sub><sup>p<sup>n</sup>-2</sup>. Then the number of isomorphism classes of simple L-modules is equal to that of simple L<sub>0</sub>-modules, corresponding to an arbitrary character of L except when its height is biggest. As to the number corresponding to the exception there was an earlier result saying that it is not bigger than p<sup>n</sup>.
Let F be an algebracially closed field of characteristic p>2, and L be the p<sup>n</sup>-dimensional Zassenhaus algebra with the maximal invariant subalgebra L<sub>0</sub> and the standard filtration {L<sub>i</sub>}|<sub>i=-1</sub><sup>p<sup>n</sup>-2</sup>. Then the number of isomorphism classes of simple L-modules is equal to that of simple L<sub>0</sub>-modules, corresponding to an arbitrary character of L except when its height is biggest. As to the number corresponding to the exception there was an earlier result saying that it is not bigger than p<sup>n</sup>.
基金
Supported in part by the National Natural Science Foundation of China Grant 19801022
the Scientifictechnological Major Project of Educational Ministry of China, Grant 99036.