期刊文献+

Truncation Analysis for the Derivative Schrodinger Equation 被引量:2

Truncation Analysis for the Derivative Schrodinger Equation
原文传递
导出
摘要 The truncation equation for the derivative nonlinear Schrodinger equation has been dis- cussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique. The truncation equation for the derivative nonlinear Schrodinger equation has been dis- cussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第1期137-146,共10页 数学学报(英文版)
基金 Partially supported by NSFC 1990135
关键词 Derivative nonlinear Schrodinger equation Geometric singular perturbation theory Melnikov's technique Derivative nonlinear Schrodinger equation Geometric singular perturbation theory Melnikov's technique
  • 相关文献

参考文献7

  • 1Wiggins,S.Global Dynamics, Phase Space Transport[]..1993
  • 2Fenichel N.Geometric singular perturbation theory for ordinary differential equations[].Journal of Differential Equations.1979
  • 3Coifman RR,Donoho DL.Translation Invariant De-Noising[].Wavelet in Statistics of Lecture Notes in Statistics.1994
  • 4Kovacic G,Wiggins S.Orbits homoclinic to resonances: with an application to chaos in a model of the forced and damped sineGordon equation[].Physica D Nonlinear Phenomena.1992
  • 5Y.Li,D McLaughlin,J Shatah,S Wiggins.Persistent noino equation[].ColnlnunPure Appl Math.1996
  • 6Kovacic G.Singular perturbation theory for homoclinic orbits in a class of hear integrable dissipative systems[].SIAM Journal on Mathematical Analysis.1995
  • 7Haller G.Homoclinic jumping in the perturbed nonlinear Schrodinger equation[].Communications in Pure Applied Mathematics.1999

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部