期刊文献+

Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures 被引量:55

Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures
原文传递
导出
摘要 A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(-1)(S-Hid) has constant eigenvalues. Here {e_i} is a local orthonormal basis for I=dx·dx with dual basis {θ_i}, II=∑_(ij)h_(ij)θ_iθ_J is the second fundamental form, H=1/n∑_i h_(ij), ρ~2=n/(n-1)(‖II‖~2-nH^2) and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in S^(n+1) is a Mbius isoparametric hypersurface, but the converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in S^(n+1) with two distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametric hypersurface embedded in S^(n+1) can take only the values 2, 3, 4, 6. A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(-1)(S-Hid) has constant eigenvalues. Here {e_i} is a local orthonormal basis for I=dx·dx with dual basis {θ_i}, II=∑_(ij)h_(ij)θ_iθ_J is the second fundamental form, H=1/n∑_i h_(ij), ρ~2=n/(n-1)(‖II‖~2-nH^2) and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in S^(n+1) is a Mbius isoparametric hypersurface, but the converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in S^(n+1) with two distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametric hypersurface embedded in S^(n+1) can take only the values 2, 3, 4, 6.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第3期437-446,共10页 数学学报(英文版)
基金 Partially supported by NSFC Partially supported by TU Berlin, DFG, SRF, SEM Partially supported by Qiushi Award. 973 Project, RFDP the Jiechu Grant Partially supported by DFG, NSFC and Qiushi Award
关键词 Mobius geometry Isoparametric hypersurface Principal curvature Mobius geometry Isoparametric hypersurface Principal curvature
  • 相关文献

参考文献3

  • 1Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1981(2)
  • 2Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1980(1)
  • 3Thomas E. Cecil,Patrick J. Ryan.Focal sets, taut embeddings and the cyclides of Dupin[J].Mathematische Annalen.1978(2)

同被引文献42

引证文献55

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部