期刊文献+

Limsup Results and LIL for Partial Sum Processes of a Gaussian Random Field 被引量:1

Limsup Results and LIL for Partial Sum Processes of a Gaussian Random Field
原文传递
导出
摘要 Let {&#958;<SUB> j </SUB>; j &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where &#8484;<SUB>+</SUB><SUP> d </SUP>is the d-dimensional lattice of all points in d-dimensional Euclidean space &#8477;<SUP>d</SUP>, having nonnegative integer coordinates. For each j = (j <SUB>1 </SUB>, ..., jd) in &#8484;<SUB>+</SUB><SUP> d </SUP>, we denote |j| = j <SUB>1 </SUB>... j <SUB>d </SUB>and for m, n &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>, define S(m, n] = &#931;<SUB> m【j&#8804;n </SUB>&#950;<SUB> j </SUB>, &#963;<SUP>2</SUP>(|n&#8722;m|) = ES <SUP>2 </SUP>(m, n], S <SUB>n </SUB>= S(0, n] and S <SUB>0 </SUB>= 0. Assume that &#963;(|n|) can be extended to a continuous function &#963;(t) of t 】 0, which is nondecreasing and regularly varying with exponent &#945; at b &#8805; 0 for some 0 【 &#945; 【 1. Under some additional conditions, we study limsup results for increments of partial sum processes and prove as well the law of the iterated logarithm for such partial sum processes. Let {&#958;<SUB> j </SUB>; j &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>be a centered stationary Gaussian random field, where &#8484;<SUB>+</SUB><SUP> d </SUP>is the d-dimensional lattice of all points in d-dimensional Euclidean space &#8477;<SUP>d</SUP>, having nonnegative integer coordinates. For each j = (j <SUB>1 </SUB>, ..., jd) in &#8484;<SUB>+</SUB><SUP> d </SUP>, we denote |j| = j <SUB>1 </SUB>... j <SUB>d </SUB>and for m, n &#8712; &#8484;<SUB>+</SUB><SUP> d </SUP>, define S(m, n] = &#931;<SUB> m&lt;j&#8804;n </SUB>&#950;<SUB> j </SUB>, &#963;<SUP>2</SUP>(|n&#8722;m|) = ES <SUP>2 </SUP>(m, n], S <SUB>n </SUB>= S(0, n] and S <SUB>0 </SUB>= 0. Assume that &#963;(|n|) can be extended to a continuous function &#963;(t) of t &gt; 0, which is nondecreasing and regularly varying with exponent &#945; at b &#8805; 0 for some 0 &lt; &#945; &lt; 1. Under some additional conditions, we study limsup results for increments of partial sum processes and prove as well the law of the iterated logarithm for such partial sum processes.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第9期1497-1506,共10页 数学学报(英文版)
基金 NSERC Canada grants of Miklos Csorgo and Barbara Szyszkowicz at Carleton University,Ottawa,and by KRF-2003-C00098 NSERC Canada grants at Carleton University,Ottawa
关键词 stationary Gaussian random field regularly varying function large deviation probability law of the iterated logarithm stationary Gaussian random field regularly varying function large deviation probability law of the iterated logarithm
  • 相关文献

参考文献1

二级参考文献9

  • 1Csorgo M., Shao, Q. M.: Strong limit theorems for large and small increments of l^p-valued Gaussian Processes. Ann. Probab., 21, 1958-1990 (1993).
  • 2Csaki, E., Csorgo, M., Shao, Q. M.: Fernique type inequalities and moduli of continuity for l^2-valued Ornstein-Uhlenbeck Processes. Ann. Inst. Henri Poincare Probabilities et Statistiques. 28, 479-517(1992).
  • 3Csaki, E., Csorgo, M., Shao Q. M.: Moduli of continuity for l^P-valued Gaussian processes. Acta Sci. Math.,60, 149-175 (1995).
  • 4Csaki, E., Csorgo, M.: Inequalities for increments of stochastic processes and moduli of continuity. Ann.Probab., 20, 1031-1052 (1992).
  • 5Lin, Z.: How big are the increments of l^P-valued Gaussian processes? Science in China (Series A), 40(4),337-349 (1997).
  • 6Shao, Q. M.: p-variation of Gaussian processes with stationary increments. Studia Sci. Math. Hungari.,31, 237-247 (1996).
  • 7Fernique X.: Continuitd des processus Gaussiens. C. R. Acad. Sci. Paris, t., 258, 6058-060 (1964).
  • 8Choi, Y. K., K6no, N.: How big are the increments of a two-parameter Gaussian process? J. Theoretical Probab., 12(1), 105-129 (1999).
  • 9Leadbetter, M. R., Lindgren G., Rootzen H.: Extremes and Related Properties of Random Sequences and Processes., Springer-Verlag, New York, 1983.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部