期刊文献+

模拟失重对雌性大鼠背根神经节的影响 被引量:2

Effects of simulated weightlessness on DRG in female rats
下载PDF
导出
摘要 目的观察模拟失重对雌性大鼠背根神经节(dorsal rootganglion,DRG)的影响。方法选取健康雌性大鼠80只,随机分为尾部悬吊实验组(n=40)和正常对照组(n=40)。实验组按照Morey-Holton教授提出的方法保持-30°头低位及后肢自由悬垂不负重的状态,各组大鼠按标准条件进行饲养。4周后取右侧L5DRG,HE染色观测DRG细胞形态,免疫组化观测髓鞘情况,电镜观测DRG髓鞘及线粒体超微结构。结果 HE染色结果显示,与对照组相比,实验组DRG细胞间隙轻度增宽,部分节细胞与卫星细胞分离。免疫组化结果显示,对照组免疫组化染色及IOD值(0.573±0.007)较实验组IOD值(0.802±0.009)降低(P<0.05),电镜下可见实验组髓鞘结构紊乱、松散,线粒体肿大、变形。结论模拟失重可引起雌性大鼠DRG髓鞘及线粒体发生损伤性变化,推测模拟失重下可导致雌性大鼠DRG损伤。 Objective To observe the effect of simulated weightlessness on DRG in female rat model. Method 80 female Sprague-Dawley rats were randomly designated as HU groups( n = 40) and normal control( NC) groups( n = 40). Four weeks later,the L5 DRG was excised,lumbar 5 DRG were stained with HE staining,the myelin of DRG was observed by using immunohistochemistry. TEM method aimed to observe the DRG myelin and mitochondria. Results HE staining showed that,in HU groups,the arrangement between cells in DRG were slightly loose,some ganglion cells and satellite cells were separated. IOD in NC groups was 0. 573 ±0. 007,which was lower than in HU groups( 0. 802 ± 0. 009)( P〈0. 05). In HU group,the structure of myelin was disorderly and twisted. Mitochondria in HU group were swollen and deformed obviously. Conclusions Stimulated weightlessness can cause the damage changes in the DRG myelin and mitochondria. These suggests that simulated weightlessness can cause damage in female rat DRG.
出处 《武警医学》 CAS 2015年第7期653-655,658,共4页 Medical Journal of the Chinese People's Armed Police Force
基金 航天医学基础与应用国家重点实验室开放基金(SMFA15K03) 武器装备预研基金(9140A17040109JB1003)
关键词 模拟失重 背根神经节 动物模型 simulated weightlessness dorsal root ganglion animal model
  • 相关文献

参考文献12

  • 1Blaber E, Mareal H,Bums B P. Bioastronautics : the in-fluence of microgravity on astronaut health [ J]. Astrobi-ology, 2010,10(5) :463 -474.
  • 2Ren X L,Zhang R, Zhang Y Y, et al. Nitric oxide syn-thase activity in the abdominal aorta of rats is decreasedafter 4 weeks of simulated microgravity [ J] . Clin ExpPharmacol Physiol, 2011,38(10) ;683-687.
  • 3Jojo V S,Jeffrey L, Scott P,ei al. Back pain in spaceand post-flight spine injury : mechanisms and countermeasure development [ J]. Acta Astronautica,2013 ,86 :24-38.
  • 4Dai Z Q, Wang R, Ling S K, ei aL Simulated micro-gravity inhibits the proliferation and osteogenesis of ratbone marrow mesenchymal stem cells [ J]. Cell Prolif,2007,40:671-684.
  • 5刘宁,崔赓,雷伟,李洁,毕龙,陈永锋,王军.尾部悬吊大鼠骨质疏松模型骨的微观结构及力学性能变化的研究[J].中国骨与关节杂志,2012,1(2):169-173. 被引量:9
  • 6Kawano F, Nomura T, Ishihara A, et al. Afferent in-put-associated reduction of muscle activity in microgravi-ty environment [ J ]. Neuroscience,2002,114 ( 4 )1133-1138.
  • 7Zhang R, Ran H H, Cai L L, et al. Simulated micro-gravity-induced mitochondrial dysfunction in rat cerebralarteries [J]. FASEB J, 2014,(6) :1134-1135.
  • 8Williams D, Kuipers A, Mukai C, et al. Acclimationduring space flight: effects on human physiology [ J].CMAJ, 2009, 180(13),1317-1323.
  • 9Miranda-Saksena M, Boadle R A, Armati P, et al. Inrat dorsal root ganglion neurons, herpes simplex virustype 1 tegument forms in the cytoplasm of the cell body[J]. J Virol, 2002, 76(19) :9934-9951.
  • 10Ishihara A, Yamashiro J, Matsumoto A, et al. Compar-ison of cell body size and oxidative enzyme activity inmotoneurons between the cervical and lumbar segmentsin the rat spinal cord after spaceflight and recovery[ J].Neurochem Res,2006,31(3) :411-415.

二级参考文献11

  • 1陈杰,马进,丁兆平,张立藩.一种模拟长期失重影响的大鼠尾部悬吊模型[J].空间科学学报,1993,13(2):159-162. 被引量:258
  • 2吴子祥,雷伟,胡蕴玉,王海强,万世勇,王军,刘绪立,李波,付索超.骨质疏松绵羊模型松质骨及皮质骨的微观结构及力学性能变化的研究[J].中国骨质疏松杂志,2007,13(8):537-541. 被引量:17
  • 3Wronski TJ,Morey-Holton ER. Skeletal response to simulated weightlessness:a comparison of suspension techniques[J].Aviation Space and Environmental Medicine,1987,(01):63-68.
  • 4D Prakash,J Behari. Synergistic role of hydroxyapatite nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposed to simulated microgravity[J].International Journal of Nanomedicine,2009.133-144.
  • 5Roy Yuen-chi Lau,Xia Guo. A review on current osteoporosis research:with special focus on disuse bone loss[J].Journal of Osteoporosis,2011.
  • 6Voor MJ,Yang S,Burden RL. In vivo micro-CT scanning of a rabbit distal femur:Repeatability and reproducibility[J].Journal of Biomechanics,2008,(01):186-193.
  • 7Buie HR,Campbell GM,Klinck RJ. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis[J].Bone,2007,(04):505-515.
  • 8Bolotin HH,Sievanen H,G rashius JL. Inaccuracies inherent in patient2specifie DXA bone mineral density measurements:comprehensive phantom2 based evaluation[J].Journal of Bone and Mineral Research,2001,(02):417-426.
  • 9Akhter MP,Lappe JM,Davies KM. Transmenopausal changes in thetrabeealarbone structure[J].Bone,2007,(01):111-116.
  • 10Joshua A MacNeil,Steven K Boyd. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography[J].Bone,2007,(01):129-137.

共引文献8

同被引文献47

  • 1陈杰,马进,丁兆平,张立藩.一种模拟长期失重影响的大鼠尾部悬吊模型[J].空间科学学报,1993,13(2):159-162. 被引量:258
  • 2徐丛,徐世田,汪宏斌,王志强.DEXA测量松质骨BMD与其生物力学相关性[J].中国骨质疏松杂志,2007,13(3):152-157. 被引量:4
  • 3Roberge E. The gravity of it all: from osteoporosis to im munosuppression, exploring disease in a microgravity envi- ronment holds promise for better treatments on Earth[J]. IEEE Pulse,2014,5(4) =a5-41.
  • 4Zhang R, Ran HH, Cai LL, et al. Simulated microgravity- induced mitochondrial dysfunction in rat cerebral arteries rJ3. FASEB J,2014,28(6) :2715-2724.
  • 5Sun Y, Shuang F, Chen DM, et al. Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss in- duced by modeled microgravity in rats[J3. Osteoporos Int,2013,24(3):969-978.
  • 6Pleticha J, Maus TP, Christner JA, et al. Minimally inva sive convection-enhanced delivery of biologics into dorsal root ganglia: validation in the pig model and prospective modeling in humans: technical note[J]. J Neurosurg, 2014, 121(4) :851-858.
  • 7Ren JC, Fan XL, Song XA, et al. Prolonged hindlimb un loading leads to changes in electrophysiological properties of L5 dorsal root ganglion neurons in rats after 14 days[J]. Muscle Nerve,2012,45(1) :65-69.
  • 8Ishihara A, Yamashiro J, Matsumoto A, et al. Comparison of cell body size and oxidative enzyme activity in motoneu- rons between the cervical and lumbar segments in the rat spinal cord after spaceflight and recovery[J]. Neurochera Res,2006,31(3) :411-415.
  • 9Morey-Holton E, Globus RK, Kaplansky A, et al. The hindlimb unloading rat model: literature overview, tech- nique update and comparison with space flight datarJ~. Adv Space Biol Me(t, 2005,10(1) .. 7-40.
  • 10周维军.美国空间生物医学实验研究发展分析与启示[M]//刁天喜.军事预防医学.北京:军事医学出版社,2014:3-5.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部