期刊文献+

多尺度形态梯度和标记分水岭的时频谱图分割

Time-Frequency Spectrogram Segmentation Using the Multi-Scale Morphological Gradient and the Marked Watershed Algorithm
下载PDF
导出
摘要 时频谱图干扰强,目标之间、目标与干扰之间有重叠,其分割是重要而困难的问题.提出一种基于图像熵定义的时频谱图多尺度形态梯度图像融合方法,将该方法与标记分水岭分割结合形成一种基于多尺度形态梯度和标记分水岭的时频谱图分割方法.实验结果表明,与基于单尺度形态梯度和标记分水岭的分割方法相比,新方法实用性更强;与Otsu法相比,新方法分割更准确. It is important and difficult to segment a time-frequency spectrogram due to its strong interference as well as serious overlap among targets and between targets and interference .An image entropy based fusion method for multi-scale morphological gradient image of a time-frequency spectrogram is presented .By combining that method with the marked watershed algorithm ,a method for segmenting time-frequency spectrogram based on the multi-scale morphological gradient image and the marked wa-tershed algorithm ,is obtained .The experiment results show that it is more practical than the segmentation method which is based on single scale morphological gradient and marker watershed ,and more accurate than Otsu method .
出处 《吉首大学学报(自然科学版)》 CAS 2015年第4期12-17,共6页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(41076060) 吉林省自然科学基金资助项目(20130101056JC) 内蒙古自然科学基金资助项目(2014MS0601) 内蒙古大学高层次人才引进科研项目(135123)
关键词 时频谱图 多尺度梯度图像 图像熵 水岭算法 图像分割 time-frequency spectrogram multi-scale morphological gradient image image entropy watershed algorithm image segmentation
  • 相关文献

参考文献17

  • 1蔡艳平,李艾华,王涛,胡重庆.基于时频谱图与图像分割的柴油机故障诊断[J].内燃机学报,2011,29(2):181-186. 被引量:29
  • 2GAVROVSKA A M,PASKAS M P,DUJKOVIC D,et al.Region-Based Phonocardiogram Event Segmentation in Spectrogram Image[C].IEEE:The 10th Symposium on Neural Network Applications in Electrical Engineering,2010:69-72.
  • 3GAVROVSKA A M,PASKAM P,RELJIN I S.Determination of Morphologically Characteristic PCG Segments from Spectrogram Image[J].Telfor Journal,2010,2(2):4-77.
  • 4SHAFI I,AHMAD J,SHAH S I,et al.Time Frequency Image Analysis Using Neural Networks[C].IEEE:IMACS Multiconference on Computational Engineering in Systems Applications,2006:315-320.
  • 5LEPRETTRE B,MARTIN N.Extraction of Pertinent Subsets from Time-Frequency Representations for Detection and Recognition Purposes[J].Signal Processing,2002,82(2):229-238.
  • 6STEINBERG R,O’SHAUGHNESSY D.Segmentation of a Speech Spectrogram Using Mathematical Morphology[C].IEEE:IEEE International Conference on Acoustics,Speech and Signal Processing,2008:1 637-1 640.
  • 7YUWONO M,SU S W,MOULTON B D,et al.Gait Cycle Spectrogram Analysis Using a Torso-Attached Inertial Sensor[C].IEEE:Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2012:6 539-6 542.
  • 8OZA A,CANAGARAJAH N,BULL D.Region Feature-Based Segmentation of Time-Frequency Images[C].Poznan,Poland:The 11th International Workshop on Systems,Signals and Image Processing,2004:375-378.
  • 9ZHANG ZhengGang,XU KaiLiang,TA DeAn,WANG WeiQi.Joint spectrogram segmentation and ridge-extraction method for separating multimodal guided waves in long bones[J].Science China(Physics,Mechanics & Astronomy),2013,56(7):1317-1323. 被引量:10
  • 10MUKHOPADHYAY S,CHANDA B.An Edge Preserving Noise Smoothing Technique Using Multiscale Morphology[J].Signal Processing,2002,82:527-544.

二级参考文献29

  • 1Dejong R G,Powell R E,Manning J E. Engine monitoring using vibration signals [C], SAE Paper 861246,1986.
  • 2Debotton G,Ben-Ari J,Ltzhaki R,et al. Vibration signature analysis as a fault detection method for SI engines [C]. SAE Paper 980115,1998.
  • 3Macian V,Lerma M J,Barila D. Condition monitoring of thermal reciprocating engines through analysis of rolling block oscillations [C]. SAE Paper 980116,1998.
  • 4Bahman Samin,Giorgio Rizzoni. Engine knock analysis and detection using time-frequency analysis[C]. SAE Paper 960618,1996.
  • 5Georg F Mauer,Robert J Watts. On-line cylinder diagnostics on combustion engines by noncontact torque and speed measurements [C]. SAE Paper 890485,1989.
  • 6Melas D E,Wilson S P. Double markov random fields and bayesian image segmentation [J]. IEEE Transactions on Signal Processing,2002,50 (2) :357-366.
  • 7Huang K, Ta D A, Wang W Q, et al. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55(7): 1453-1464.
  • 8Song X J, Ta D A, Wang W Q. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm. Ultrasound Med Biol, 2011, 37(10): 1704-1713.
  • 9Naili S, Vu M-B, Grimal Q, et al. Influence of viscoelastic and vis- cous absorption on ultrasonic wave propagation in cortical bone: Ap- plication to axial transmission. J Acoust Soc Am, 2010, 127(4): 2622-2634.
  • 10Ta D A, Wang W Q, Huang K, et al. Analysis of frequency depend- ence of ultrasonic backscatter coefficient in cancellous bone. J Acoust Soc Am, 2008, 124(6): 4083-4090.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部