期刊文献+

聚吡咯修饰锂钒氧纳米管的制备及其电化学性能研究

Synthesis and Electrochemical Performance of Lithium Vanadium Oxide Nanotubes Decorated with Polypyrrole
下载PDF
导出
摘要 以锂钒氧纳米管为载体,利用氧化聚合法制备了聚吡咯修饰锂钒氧纳米管复合纳米材料。形貌和结构分析表明所制备的样品经聚吡咯修饰后仍保持较好的纳米管状结构,管内径约20 nm左右,外径约100 nm左右;电化学性能测试表明经聚吡咯修饰后电极材料在不同倍率下放电比容量均有明显增加,经30次不同倍率循环后,容量保持率由修饰前的42.7%增加到55.8%,电化学性能的改善归因于聚吡咯高的电导率和良好的柔韧性。 A new inorganic/organic hybrid nanomaterial, which comprises lithium vanadium oxide nanotubes and polypyrrole,' was fabricated by oxidative polymerization. The analysis of the morphology and structure shows that lithium vanadium oxide nanotubes decorated with conducting polymer polypyrrole still maintain previous nanotubular structure ; the inner and outer diameters of the as-prepared samples are of about 20 nm and 100 nm, respectively. The electrochemical experiments demonstrate that lithium vanadium oxide nanotubes modified by polypyrrole have enhanced discharge capacity at different rates, and the capacity retention increases from 42.7% (before modification) to 55.8% (after modification) after 30 cycles at different rates, which may be attributed to high conductivity and good flexibility of the polypyrrole.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第7期1736-1740,1747,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(51472182) 河南省重点科技攻关项目(132102210267) 河南省高等学校重点科研项目(15A430011)
关键词 聚吡咯 锂钒氧纳米管 氧化聚合 电化学性能 polypyrrole lithium vanadium oxide nanotube oxidative polymerization electrochemicalperformance
  • 相关文献

参考文献20

  • 1Kang K, Meng Y S, Breger J, et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries[ J], 5ciencc,2006,311(1) :977-980.
  • 2Kim D, Kang S H, Balasubramanian M, et al. High-energy and High-power Li-rich Nickel Manganese Oxide Electrode Materials [ J ].Electrochem. Commun. ,2010,12( 11) : 1618-1621.
  • 3Zhang X,Cheng F, Yang J, et al. LiNi0 5Mn, 504 Porous Nanorods as High-rate and Long-life Cathodes for Li-ion Batteries[ J]. Nano Lett.,2013,13(6):2822-2825.
  • 4Meng X L,Dou S M,Wang W L. High Power and High Capacity Cathode Material LiNi0 sMn0 502 for Advanced Lithium-ion Batteries[ J]. J.Power Sources,2008,184(2) :489-493.
  • 5Liu H Q, Zheng T T, Guo Q Y, et al. Development of LiFeP04 as the Cathode Materials[ J]. Rare Metal Mater. Eng. ,2012,41(4) :748-752.
  • 6Pistoia G, Panero S, Tocci M, et al. Solid Solutions Lij +*V308 as Cathodes for High Rate Secondary Li Batteries[ J] . Solid State Ion. ,1984,13(4):311-318.
  • 7Chouvy C. Template-free One-step Electrochemical Formation of Polypyrrole Nanowire Array [ J ]. Electrochem. Commun. ,2009,11(2) : 298-301.
  • 8Malta M, Louam G, Errien N, et al. Redox Behavior of Nanohybrid Material with Defined Morphology: Vanadium Oxide Nanotubes Intercalatedwith Polyaniline[ J]. J. Power Sources,2006,156( 2 ) :533-540.
  • 9Feng C Q, Chew S Y, Guo Z P, et al. An Investigation of Polypyrrole-LiV308 Composite Cathode Materials for Lithium-ion Batteries[ J]. J.Power Sources,2007,174(2) : 1095-1099.
  • 10Yang Y, Liao X Z,Ma Z F, et al. Superior High-rate Cycling Performance of LiFeP04/C-PPy Composite at 55 t [ J]. Electrochem. Commun.,2009,11(6):1277-1280.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部