期刊文献+

状态空间中约束系统的运动方程 被引量:1

EQUATIONS OF MOTION IN STATE SPACE FOR CONSTRAINED MECHANICAL SYSTEMS
下载PDF
导出
摘要 引入状态变量表示力学系统的约束方程;建立状态空间中运动约束系统的新型变分原理;导出运动约束系统的带乘子的运动微分方程和广义状态变量运动微分方程;证明状态空间中运动约束系统的运动方程是奇异的;举例说明所得结果的应用. The constraint equations expressed by state variables were introduced, and new variational principles of kinematic constrained systems in state space were established. The equations of motion with multiplier and in general state variables for kinematic constrained systems were derived. It is shown that the motion equations of constrained systems in state space are singular. An example was given to illustrate the application of the result.
作者 丁光涛
出处 《动力学与控制学报》 2015年第4期250-255,共6页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11472063)~~
关键词 分析力学 状态空间 运动约束 变分原理 运动方程 analytical mechanics, state space, kinematic constraint, variational principle,motmnequations
  • 相关文献

参考文献10

二级参考文献18

  • 1梁立孚,石志飞.非完整约束系统中广义位移变分的选值域问题[J].固体力学学报,1993,14(3):189-193. 被引量:7
  • 2梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985..
  • 3梅凤翔 刘端 等.高等分析动力学[M].北京:北京理工大学出版社,1991.693-694.
  • 4戈尔茨坦H.古典力学[M].北京:世界图书出版公司,1995.438-441.
  • 5Santill R M. Foundations of Theoretical Mechanics Ⅱ. New York: Springer-Verlag, 1983
  • 6Courant R, Hillbert D. Methods of Mathematical Physics Ⅰ. New York: Interscience, 1953
  • 7Synge J L. Classical Dynamics. Berlin: Springer-Verlag, 1960
  • 8Rosenberg R. Analytical Dynamics of Discrete Systems. New York: Plenum Press. 1977
  • 9Goldstein H. Classical Mechanics. 2nd ed. Addison-Wesley, 1980
  • 10Santilli R M. Foundations of Theoretical Mechanics I. New York: Springer-Verlag, 1978

共引文献107

同被引文献13

  • 1梅凤翔.非完整系统的自由运动与非完整性的消失[J].力学学报,1994,26(4):470-476. 被引量:22
  • 2Lagrange JL. Mecanique Analytique . Paris: Jaques Gabay, 2006.
  • 3Hurtado JE, Sinclair AJ. Lagrangian mechanics of overparameterizedsystems. Nonlinear Dynamics, 2011, 66: 201-212.
  • 4Lure AI. Analitiqeska Mehanika. Moskva: Fizmatgiz,1961.
  • 5陈滨. 分析力学. 第二版. 北京: 北京大学出版社,2012.
  • 6Brogliato B, Goeleven D. Singular mass matrix and redundant constraintsin unilaterally constrained Lagrangian and Hamiltonian systems.Multibody System Dynamics, 2015, 35: 39-61.
  • 7Wojtyra M, Fraczek J. Solvability of reactions in rigid multibodysystems with redundant nonholonomic constraints. Multibody SystemDynamics, 2013, 30: 153-171.
  • 8Whittaker ET. A Treatise on the Analytical Dynamics of Particlesand Rigid Bodies, 4th edn. Cambridge: Cambridge University Press,1970, Sect. 24 & 87.
  • 9Jungnickel U. Dierential-algebraic equations in Riemannian spacesand applications to multibody system dynamics. ZAMM, 1994, 74:409-415.
  • 10Зегжда СА, Солтаханов ШХ, Юшков МП. Уравнения движ ения Неголономых Систем и Вариатсионные Принципы Мех аники. Новый Класс Задач Управления. Москва: Физматлит, 2005.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部