期刊文献+

Pre-Btzinger复合体中耦合神经元簇同步模式及转迁的分岔分析 被引量:2

BIFURCATION ANALYSIS OF SYNCHRONOUS BURSTING PATTERNS AND TRANSITIONS OF COUPLED NEURONS IN PRE-BTZINGER COMPLEX
下载PDF
导出
摘要 Pre-Btzinger复合体中兴奋性神经元节律性簇放电与呼吸节律的产生关系密切.泄漏电流对神经元簇放电具有重要的调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元簇同步模式及其转迁机制的影响.结果表明,在不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相"fold/homoclinic"型、"sub Hopf/homoclinic"型和反相"fold/fold cycle"型和"sub Hopf/fold cycle"型簇放电.本文的研究为进一步探索呼吸节律的产生机制提供了一些见解. The rhythmic bursting of excitatory neurons in the pre-Botzinger complex is closely related to the re- spiratory rhythm generation. Leakage current plays an important role in regulating the bursting pattern of neurons. We studied the influences of the leakage current on bursting synchronization and transition mechanisms by both two-parameter bifurcation analysis and fast/slow decomposition. The results show that, under different initial con- ditions, the coupled cells can exhibit "fold/homoclinic" type and "subHopf/homoclinic" type bursting for in- phase synchronization, and exhibit "fold/fold cycle" type and "subHopf/fold cycle" type bursting for anti-phase synchronization. This work provides insights into the study of the respiratory rhythm.
出处 《动力学与控制学报》 2015年第4期266-270,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11072013) 北京市教委科技计划项目(KM201410009012)~~
关键词 簇放电 双参数分岔 快慢变量分离 pre—BiStzinger复合体 呼吸节律 bursting, two-parameter bifurcation, fast/slow decomposition, pre-Botzinger complex, re-spiratory rhythm
  • 相关文献

参考文献11

  • 1Smith J C, Ellenberger H H, Ballanyi K, Richter D W,Feldman J L. Pre-B-tzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science, 1991, 254 : 726 - 729.
  • 2Rekling J C, Feldman J L. Pre-BStzinger complex and pacemaker neurons : hypothesized site and kernel for respir- atory rhythm generation. Annual Review of Physiology, 1998, 60(1): 385 -405.
  • 3Butera R J, Rinzel J, Smith J C. Models of respiratory rhythm generation in the pre-Btitzinger complex. If. Popula- tions of coupled pacemaker neurons. Journal of Neurophysi- ology, 1999, 82:398-415.
  • 4Best J, Borisyuk A, Rubin J, Terman D, Weehselberger M. The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal on Applied Dynamical Systems, 2005, 4(4): 1107 - 1139.
  • 5Duan L, Zhai D, Tang X. Bursting induced by excitatory synaptic coupling in the pre-Btitzinger complex. Interna- tional Journal of Bifurcation Chaos, 2012, 22 ( 05 ) : 1250114.
  • 6Gu H G, Li Y Y, Jia B, et al. Parameter-dependent syn- chronization transition of coupled neurons with co-existing spiking and bursting, Physica A: Statistical Mechanics andits Applications, 2013, 392 (15): 3281 -3292.
  • 7Gaiteri C, Rubin J E. The interaction of intrinsic dynamics and network topology in determining network burst synchro- ny. Frontiers in Computational Neuroscience, 2011 ( 5 ) : 1 -10.
  • 8Koizumi H, Smith J C. Persistent Na + and K + -Dominated leak currents contribute to respiratory rhythm generation in the pre-B-tzinger complex in vitro. The Journal of Neuro- science, 2008, 28(7) :1773 - 1785.
  • 9Rinzel J. Bursting oscillations in an excitable membrane model. In: Sleeman B D, Jarvis R J, eds. Ordinaryand partial differential equations. New York:Springer-Verlag, 1985:304 -316.
  • 10Kuznetsov Y A. Elements of applied bifurcation theory. New York: Springer-Verlag, 1995 : 253 - 265.

二级参考文献14

  • 1缪协兴,陈占清,茅献彪,陈荣华.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003,35(6):660-667. 被引量:41
  • 2Liao M, Tang X H, Xu C J. Bifurcation analysis for a three-species predator-prey system with two delays. Com- munications in Nonlinear Science and Numerical Simula- tion, 2012,17 ( 1 ) : 183 - 194.
  • 3Meng X Y, Huo H F, Zhang X B. Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators. C in Nonlinear Science and Numerical Simulation, 2011,16( 11 ) :4335 - 4348.
  • 4Orosz, G, Krauskopf B, Wilson R. E. Bifurcations and multiple traffic jams in a car-following model with reaction- time delay. Physica D, 2005, 211(3-4): 277 293.
  • 5Sakellaridis N G, Karystianos M E, Vournas C D. Local and global bifurcations in a small power system. Interna- tional Journal of Electrical Power & Energy Systems, 2011, 33(7) : 1336 1347.
  • 6Belokolos E D, Kharchenko V O, Kharchenko D 0. Chaos in a generalized Lorenz system. Chaos, Solitons & Frac- tals, 2009, 41(5): 2595-2605.
  • 7Ghosh D, Chowdhury A R, Saha P. Multiple delay Rtissler system-Bifurcation and chaos control. Chaos, Solitons & Fractals, 2008, 35 ( 3 ) : 472 - 485.
  • 8Ning D, Lu J A, Han X P. Dual synchronization based on two different chaotic systems: Lorenz systems and Rtssler systems. Journal of Computational and Applied Mathe- matics, 2007, 206(2): 1046 - 1050.
  • 9Pei L J, Duan L , Liu H Y. Dynamics of the coupled Lorenz-R6ssler systems, 2010 International Workshop on Chaos-Fractal Theory and Applications (IWCFTA), 2010 : 271 - 274.
  • 10周义仓,靳祯,秦军林.微分方程及其应用.北京:科学出版社,2003.

共引文献1

同被引文献4

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部