期刊文献+

网络影响力预知模型:一种大数据下高校舆情监测与预警机制 被引量:12

Predicting Model in Network Impact: a Monitoring and Warning System for Public Opinion in Universities under Big Data Framework
原文传递
导出
摘要 互联网对高校大学生的思想传播模式尤其对舆情的传播产生了巨大影响。对于这样的新形势,建立和健全高校大学生舆情监测与预警机制对于及时了解大学生的思想动态,分析和解决思想问题,为大学生树立正确"三观"具有重要的意义。基于此,有必要建立一种监测大学生网络舆情的模型——基于连续时间马尔科夫过程的用户影响力预知模型,通过该模型找到高校社交媒体中最具影响力的用户,锁定最具影响力的用户群(关键人物),采用基于机器学习的自动文本分类方法,对该群体进行分类,主要分为三类:积极型关键人物、中立型关键人物、消极型关键人物,最后针对不同类型的关键人物采取不同的措施以达到对高校大学生社交网络舆情发展的监测与预警。 The Internet has great impact on the dissemination of ideas, and in particular public opinion,among college students. Under these new circumstances, it is of great significance to build up and gradually improve a monitoring and warning system for public opinion in universities, which will enable us to know how the students think, and address relevant issues in order to help them to establish the correct "three-values". This paper proposes a monitoring system for college student online public opinion, a predicting model of user influence based on the continuous time Markov process, through which we will find the most influential users(key figures)the social network of college students. With an automatic text classification method based on machine learning,the key figures are mainly classified into three categories: positive key figures, neutral key figures, and negative key figures. Finally, the paper proposes some measures in accordance with different types of key figures to promote the development of social networking service for college students.
出处 《深圳大学学报(人文社会科学版)》 CSSCI 北大核心 2015年第4期156-160,共5页 Journal of Shenzhen University:Humanities & Social Sciences
基金 教育部人文社会科学研究项目"基于市道轮换框架下带levy跳的高频数据的波动率研究"(14YJAZH052) 中央高校基本科研业务费专项资金"PMCMC算法在市道轮换框架下利率结构模型中的应用" 深圳大学科研项目"大数据环境下社会舆情分析 监测与预警研究--基于特大城市深圳市的研究"(W201402)
关键词 大数据 大学生网络舆情 监测预警 马尔科夫过程 文本分类 big data Internet public opinion monitoring and warning Markov process text categorization
  • 相关文献

参考文献5

  • 1K. Saito, M. Kimura, K. Ohara, and H. Motoda. Efficient estimation of cumulative influence for multiple activation information diffusion model with continuous time delay[J]. In PRACAI 2010: Trends in Artificial Intelligence, Springer, 2010, 6230 : 244-255.
  • 2肖宇,许炜,张晨,何丹丹.社交网络中用户区域影响力评估算法研究[J].微电子学与计算机,2012,29(7):58-63. 被引量:12
  • 3X.Song, Y.Chi, K.Hino, and B.L.Tseng. Information flowmodeling based on diffusion rate for prediction and ranking [J]. In Procedings of the 16th international conference on World Wide Web, ACM, 2007, 25 : 191-200.
  • 4W.J.Anderson. Continuous -time Markov chains: An applications-oriented approach [M]. Springer-Verlag New York, 1991, volume 7.
  • 5Sebastiani F. Machine learning in automated text categorization[J]. ACM Computing Survey, 2002, 34(1):1-47.

二级参考文献6

  • 1周荣庭,方冰.Web2.0网站新闻传播的特性比较与趋势[J].网络传播,2009(11):60-61.
  • 2Nitin Agarwal, Huan Liu. Identifying the influential bloggers in a community [C]// Proceedings of the in- ternational conference on Web search and web data mining. USA: Seattle, 2008:207-217.
  • 3Cha M, Haddadi H. Benevenuto, measuring user influence in twitter., the million follower fallacy [C]//Proc. of International AAAI Conference on Weblogs and Social Media (ICWSM). Washington, 2010 : 125- 134.
  • 4Jianshu Weng, Ee-Peng Lim, Jing Jiang, et al. Twit- terRank: finding topic-sensitive influential twitterers [C]//Proceedings of the third ACM international con- ference on Web search and data mining. USA: New York, 2010:69-86.
  • 5Kimura M, Saito K, Nakano R. Extracting influential nodes for information diffusion on a social network [C] //Proceedings of the 22nd AAAI Conference on Arti- ficial Intelligence. Canada Vancouver, 2007. AAAI, 1371-1376.
  • 6Page L. Brin S, Motwani tL The pagerank citation ranking: Bringing order to the web [R]. Stanford U- niversity, Technical report, 1998.

共引文献11

同被引文献169

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部