期刊文献+

Constraint strength and axial/radial particle velocity profiles for an integrated riser outlet 被引量:1

Constraint strength and axial/radial particle velocity profiles for an integrated riser outlet
原文传递
导出
摘要 To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed. Constraints, related to the gas-solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%. To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed. Constraints, related to the gas-solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%.
出处 《Particuology》 SCIE EI CAS CSCD 2015年第4期179-186,共8页 颗粒学报(英文版)
基金 support from the National Natural Science Foundation of China(Grant nos.21106028 and 20976190) the Hebei Province Natural Science Foundation of China(Grant no.B2013202125)
关键词 Combined fluidized bed RISER Outlet structure Particle velocity Constraint strength Combined fluidized bed Riser Outlet structure Particle velocity Constraint strength
  • 相关文献

参考文献7

二级参考文献88

共引文献58

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部