期刊文献+

面向主题的高质量评论挖掘模型研究 被引量:2

Research on Subject-Oriented High Quality Reviews Mining Model
原文传递
导出
摘要 【目的】帮助消费者从海量的评论集合中识别高质量评论。【方法】利用LDA主题模型对消费者关注的主题进行分类,借鉴改进的自动摘要的思想,追踪评论主题下的高质量评论,提出面向主题的高质量评论挖掘模型。【结果】自动提炼出每个主题下的高质量评论,其准确率、召回率和F1值分别为80.73%、64.90%和71.95%,并通过实证研究证明该模型的有效性和优越性。【局限】仅与部分典型模型作对比,其他模型方法还未进行验证。【结论】该模型能从评论集中有效地挖掘出不同主题下的高质量评论,从而能够更加高效地辅助消费者进行购买决策。 [Objective] In order to help consumers distinguish high quality reviews from enormous review sets. [Methods] Using LDA topic model to classify the themes and referring to the thoughts of improved automatic summarization, this paper puts forward Subject-Oriented High Quality Reviews Mining Model. [Results] The model extracts high quality reviews automatically under each topic. The results of the experiment show that its precision, recall and F1 score reach 80.73%, 64.90% and 71.95% respectively, proving the model's effectiveness and superiority. [Limitations] Just compared the model with some typical models, but there are some other methods exist but have not been verified. [Conclusions] The model can effectively mine high quality reviews under different themes from the review sets, thus help customers in making more effective purchase decision.
作者 唐晓波 邱鑫
出处 《现代图书情报技术》 CSSCI 2015年第7期104-112,共9页 New Technology of Library and Information Service
基金 国家自然科学基金项目"社会化媒体集成检索与语义分析方法研究"(项目编号:71273194)的研究成果之一
关键词 评论挖掘 主题发现 自动摘要 LDA Review mining Topic discovery Automatic summarization LDA
  • 相关文献

参考文献21

  • 1Ghose A, Ipeiortis P G. Designing Novel Review Ranking Systems: Predicting the Usefulness and Impact of Reviews [C]. In: Proceedings of the 9th International Conference on Electronic Commerce (ICEC'07), Minneapolis, MN, USA. New York: ACM, 2007: 303-310.
  • 2Otterbacher J. "Helpfulness" in Online Communities: A Measure of Message Quality [C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'09), Boston, MA, USA. New York: ACM, 2009: 955-964.
  • 3李志宇.在线商品评论效用排序模型研究[J].现代图书情报技术,2013(4):62-68. 被引量:28
  • 4王平,代宝.消费者在线评论有用性影响因素实证研究[J].统计与决策,2012,28(2):118-120. 被引量:31
  • 5彭岚,周启海,邱江涛.消费者在线评论有用性影响因素模型研究[J].计算机科学,2011,38(8):205-207. 被引量:54
  • 6聂卉.基于内容分析的用户评论质量的评价与预测[J].图书情报工作,2014,58(13):83-89. 被引量:20
  • 7Liu Y, Huang X, An A, et al. Modeling and Predicting the Helpfulness of Online Reviews [C]. In: Proceedings of the 8th IEEE International Conference on Data Mining, (ICDM'08). IEEE, 2008: 443-452.
  • 8Fei G, Mukherjee A, Liu B. Exploiting Business in Reviews for Review Spammer Detection [C]. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. 2013.
  • 9Moghaddam S, Ester M. ILDA: Interdependent LDA Model for Learning Latent Aspects and Their Ratings from Online Product Reviews [C]. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'll). New York: ACM, 2011 : 665-674.
  • 10阮光册.基于LDA的网络评论主题发现研究[J].情报杂志,2014,33(3):161-164. 被引量:41

二级参考文献126

  • 1秦兵,刘挺,李生.基于局部主题判定与抽取的多文档文摘技术[J].自动化学报,2004,30(6):905-910. 被引量:10
  • 2秦兵 LiuTing LiSheng.Summarization based on physical features and logical structure of multi documents[J].High Technology Letters,2005,11(2):133-136. 被引量:2
  • 3YE Hui-min,CHENG Wei,DAI Guan-zhong.Design and Implementation of On-Line Hot Topic Discovery Model[J].Wuhan University Journal of Natural Sciences,2006,11(1):21-26. 被引量:14
  • 4Luhn H P. The Automatic Creation of Literature Abstracts[J]. IBM Journal of Research and Development, 1958 : 159-165.
  • 5Edmundson W. Automatic Abstracting and Indexing:Survey and Recommendations[J]. Communication of the ACM, 1961,4 (5): 226-234.
  • 6Edmundson W. New methods in automatic abstracting [J].Journal of the Association for Computing Machinery, 1996,16(2): 264-285.
  • 7Pollock J J, Zamora A. Automatic Abstracting Research at Chemical Abstracts Service[J]. Journal of Chemical Information and Computer Sciences, 1975,15(4) : 226-232.
  • 8Paice C D. The Automatic Generation of Literature Abstracts: An Approach Based on the Identification of Self-indicating Phrases[J]. Information Retrieval Research.
  • 9Schank C, Abelson P. Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge Structures[M]. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1977.
  • 10Lisa F R, Jacobs P S. SCISOR.. Extracting Information Online News[J]. Communication of the ACM, 1990,33 (11): 88-97.

共引文献209

同被引文献24

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部