期刊文献+

机械误差对肿瘤精确旋转放疗射野变形的影响及补偿算法研究 被引量:4

Research on Radiation Field Deformation and Compensation Algorithm Based on Mechanical Errors during Precise Radiotherapy
下载PDF
导出
摘要 放疗设备的机械误差是影响肿瘤放射治疗精确性的重要因素,且随设备使用时间呈现逐渐增大趋势,因此研究机械误差对治疗效果的影响和相应解决方法具有重要意义。首先对旋转放疗设备射线投递的过程进行数学建模,得到治疗头各自由度机械误差对等中心面射野形状的影响规律,并提出了一种用于衡量射野变形的有限点二维搜索方法;然后,通过进行射野区域分割、最佳逼近射野计算以及多叶光栅顶点坐标反算,提出了一种基于多叶光栅的射野变形补偿算法;最后,对四个临床上的实际射野进行了算法的数值仿真试验。结果表明,算法可以有效减少50%左右由机械误差引起的射野形状误差,显著提高了放射治疗精度。 Mechanical Errors of equipments which shows a gradual increasing trend along with the increase of running time is one of the important sources that compromise the spatial accuracy of radiation dose delivery. Therefore research on the deformation of radiation field caused by mechanical errors and corresponding solutions is of great significance in clinic treatment. Mathematical modeling of the x-ray delivery process is introduced at the beginning of this article, where the laws of field deformation along with mechanical errors of each freedom are achieved. Afterwards a finite-point dimensional search method is proposed to measure the deformation of the radio field. Then, a compensation algorithm based on multi-leaf collimator is put forward by region segmentation of radiation field, calculation of best approximation radiation field and inverse of vertex coordinates of multi-leaf collimator. At last, numerical simulation of the compensation algorithm is conducted by using four actual radiation fields. The result of the simulation shows that the compensation algorithm can reduce the radiation field shape deformation by about 50%, which improves accuracy of radiation therapy significantly.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第15期158-167,共10页 Journal of Mechanical Engineering
基金 北京市科技计划(Z141100000514015) 清华大学摩擦学国家重点实验室重点(SKLT12A03) 清华大学自主科研计划课题学科交叉专项(20111081026)资助项目
关键词 机械误差 精确放疗 射野形状 补偿 多叶光栅 mechanical error precise radiotherapy radiation field compensation multi-leaf collimator
  • 相关文献

参考文献10

  • 1VANHERK M. Errors and margins in radiotherapy[J]. Seminars in Radiation Oncology, 2004, 14(1): 52-64.
  • 2SKWORCOW P, MILLS J A, HASS O C, et al. A newapproach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries[J]. Phys. Med. Biol. , 2007, 52(23): 7109-7124.
  • 3ROSCA F, LORENZ F, HACKER F L, et al. An MLC-based linac QA procedure for the characterization of radiation isocenter and room lasers' position[J]. Medical Physics, 2006, 33(6): 1780.
  • 4CLARKE M F, BUDGELL G J. Using of an amorphous silicon EPID for measuring MLC calibration at varying gantry angle[J]. Phys. Med. Biol., 2008, 53(2): 473-485.
  • 5DU W, GAO S, WANG X, et al. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy[J]. Medical Physics, 2012, 39(4): 2156.
  • 6CHO Y, MOSELEY D J, SIEWERDSEN J H, et al. Accurate technique for complete geometric calibration of cone-beam computed tomography systems[J]. Medical Physics, 2005, 32(4): 968.
  • 7GEYER P, BLANK H, EVERS C, et al. Filmlessevaluation of the mechanical accuracy of the isocenter in stereotactic radiotherapy[J]. Strahlentherapie and Onkologie, 2007, 183(2): 76-80.
  • 8刘菡萏,王石刚,徐威,梁庆华.微纳米生物机器人与药物靶向递送技术[J].机械工程学报,2008,44(11):80-86. 被引量:4
  • 9MAVROIDIS C, FLANZ J, DUBOWSKY S, et al. High performance medical robot requirements and accuracy analysis[J]. Robotics and Computer Integrated Manufacturing, 1998, 14(5): 329-338.
  • 10Wang ShuxinYun JintianZhang ZhifeiLiu YouwuZhang QingSchool of Mechanical Engineering,Tianjin University,Tianjin 300072, China.MODELING AND COMPENSATION TECHNIQUE FOR THE GEOMETRIC ERRORS OF FIVE-AXIS CNC MACHINE TOOLS[J].Chinese Journal of Mechanical Engineering,2003,16(2):197-201. 被引量:32

二级参考文献33

  • 1蒋怀伟,王石刚,徐威,张治洲,贺林.纳米生物机器人研究与进展[J].机器人,2005,27(6):569-574. 被引量:2
  • 2JAIN R K. Delivery of molecular and cellular medicine to solid tumors[J]. Advanced Drug Delivery Reviews, 2001, 46(1-3): 149-168.
  • 3JANG S H, WIENTJES M G, LU D, et al. Drug delivery and transport to solid tumors[J]. Pharmaceutical Research, 2003, 20(9): 1 337-1 350.
  • 4TORCHILIN V P. Drug targeting[J]. European Journal of Pharmaceutical Sciences, 2000, 11 (Suppl. 2): 81-91.
  • 5LUBBE A S, ALEXIOU C, BERGEMANN C. Clinical application of magnetic drug targeting[J]. Journal of Surgical Research, 2001, 95(2): 200-206.
  • 6ALEXIOU C, ARNOLD W. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting[J]. Journal of Magnetism and Magnetic Materials, 2001, 225(1-2): 187-193.
  • 7HIGASHI T, ASHIDA N, TAKEUCHI T. Orientation of blood cells in static magnetic fields[J]. Physica B, 1997, 237-237: 616-620.
  • 8FUNG Y C. Biomechanics-circulation[M]. 2nd ed. New York: Springer Verlag, 1997.
  • 9ROSENSWEIG R E. Ferrohydrodynamics[M]. New York: Dover Publications, 1997.
  • 10GRIEF A, RICHARDSON G. Mathematical modelling of magnetically targeted drug delivery[J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1):455-463.

共引文献33

同被引文献27

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部