期刊文献+

椰壳活性炭对气态氯化汞吸附作用的对比研究 被引量:2

Characterization for Adsorption of Vapor-phase HgCl_2 on Coconut Shell Activated Carbon
下载PDF
导出
摘要 以氯化汞为目标污染物,研究了椰壳活性炭对气态氯化汞的吸附性能,并结合活性炭微结构表征以及动力学模型拟合研究了其吸附机理。结果表明,椰壳活性炭对气态氯化汞的最大吸附量35.9 mg/g,且活性炭比表面积和总孔容对其吸附氯化汞有显著影响,比表面积大、总孔容大有利于提高饱和吸附量。载气流量不影响活性炭对氯化汞的饱和吸附量,但是影响其吸附时间,增大载气流量能够缩短吸附时间。温度对吸附量和吸附时间均有影响,升高温度能够提高吸附量且缩短吸附时间。通过对吸附过程的动力学模拟,发现活性炭对氯化汞的吸附均符合班厄姆动力学模型,相关系数均大于0.99,活性炭的吸附速率与吸附量随比表面积与总孔容的增大而增大。 With mercury chloride as pollution target, the adsorption properties of activated carbons for vapor-phase HgC12 were investigated. Combining with structural characterization and dynamic model fitting, the adsorption mechanism was discussed. The results indicated that the adsorption capacity of HgC12 on coco-nut shell activated carbon was 35.9 mg/g and obviously influenced by surface area and total volume. The gas flow didn' t influence the saturated adsorption quantity but the adsorption time is affected. The increase of the gas flow could shorten the adsorption time. The temperature affected the adsorption capacity and adsorption time, and raising temperature could increase the adsorption capacity and shorten the adsorption time. From the kinetic study,it was found that the HgC12 adsorption process of the activated carbon could be described by Bang, ham model with R2 〉 0.99, and the adsorption rate and capacity increased with the increase of surface area and total volume.
出处 《生物质化学工程》 CAS 北大核心 2015年第4期1-6,共6页 Biomass Chemical Engineering
基金 中国林科院林业新技术所基本科研业务费专项资金(CAFINT2013C02) 江苏省自然科学基金(BK2012514) 盱眙县政府开放性课题(201412)
关键词 活性炭 比表面性质 氯化汞吸附 吸附动力学 activated carbon surface properties HgC12 adsorption adsorption kinetic
  • 相关文献

参考文献6

二级参考文献28

  • 1王起超,康淑莲,陈春,王志刚,邹山同.东北、内蒙古东部地区煤炭中微量元素含量及分布规律[J].环境化学,1996,15(1):27-35. 被引量:23
  • 2高尚愚 陈维(Gao Shangyu Chen Wei).活性炭基础与应用(Basic principle and application of activated carbon)[M].北京:中国林业出版社(Beijing:Forestry Press),1984..
  • 3朱珍锦 薛来 谈仪(Zhu Zhenjin Xue Lai Tan Yi).负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究(Studies on characteristic of mercury distribution in combustion products at various loads of A P.C.-fired utility boiler)[J]..
  • 4Arenas E, Chejne F, 2004. The effect of the activating agent and temperature on the porosity development of physically activated coal chars. Carbon, 42: 2451–2455.
  • 5Cao Y, Duan Y F, Kellie S, Pan W P, 2005. Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOx burners. Energy and Fuels, 19: 842–854.
  • 6Chang C F, Chang C Y, Tsai W T, 2000. Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. Journal of Colloid and Interface Science, 232(1): 45–49.
  • 7Furimsky E, 2000. Characterization of trace element emissionsfrom coal combustion by equilibrium calculations. Fuel Processing Technology, 63: 29–44.
  • 8Granite E J, Pennline H W, Hargis R A, 2000. Novel sorbents for mercury removal from flue gas. Industrial and Engineering Chemistry Research, 39(4): 1020–1029.
  • 9Hayashi J, Horikawa T, Muroyama K, Vincent G G, 2002. Activated carbon from chickpea husk by chemical activation with K2CO3: preparation and characterization. Microporous and Mesoporous Materials, 55(1): 63–68.
  • 10Huggins F E, Yap N, Huffman G P, Senior C L, 2003. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures. Fuel Processing Technology,82: 167–196.

共引文献133

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部