期刊文献+

基于MapReduce框架的并行蚁群优化聚类算法 被引量:2

Parallel Ant Colony Optimization Clustering Algorithm Based on MapReduce Framework
下载PDF
导出
摘要 传统蚁群优化聚类算法在处理大规模数据时存在内存不足,不能体现蚁群算法的并行优势,无法处理分布式数据等问题。为此,提出一种并行蚁群优化聚类算法。通过借鉴搜索空间复制和搜索空间分块的思想,解决大数据处理问题,逐行读取信息素和数据,避免当数据规模过大时,将信息素一次性读入而造成内存不足的风险。实验结果表明,该算法在处理大规模数据时具有较好的可扩展性和较高的加速比。 Traditional algorithm has to face a number of problems,such as limiting of memory,lacking of parallel advantage,unable to handle distributed datasets.In order to deal with the problems,this paper proposes a parallel Ant Colony Optimization Clustering(ACOC) algorithm.The proposed algorithm solves the problem of big data by referencing the thought of the search space replication approach and the search space partition approach.The algorithm can read pheromone and dataset line-by-line to avoid out of memory when dealing with large datasets.Experimental results demonstrate that the algorithm has good scalability and high speedup when dealing with large-scale data.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第8期168-173,共6页 Computer Engineering
基金 国家"973"计划基金资助项目(2013CB329603) 国家自然科学基金资助项目(71071047) 安徽省自然科学基金资助项目(1208085MG120)
关键词 大数据 MapReduce计算框架 聚类算法 蚁群 并行算法 big data MapReduce computation framework clustering algorithm ant colony parallel algorithm
  • 相关文献

参考文献15

  • 1Shelokar P S, Jayaraman V K, Kulkarni B D. An Ant Colony Approach for Clustering[ J ]. Analytica Chimica Acta,2004,509 ( 2 ) :187-195.
  • 2Kao Yucheng, Kevin C. An ACO-based Clustering Algorithm[ M ]. Berlin, Germany : Springer-Verlag, 2006.
  • 3David C,Huang Ming,Lin Chia-Ping,et al. The Adaptive Approach for Storage Assignment by Mining Data of Warehouse Management System for Distribution Centres [ J ]. Enterprise Information Systems, 2011,5 ( 2 ) : 219-234.
  • 4Lian Duan, Street W N, Eric X. Healthcare Information Systems: Data Mining Methods in the Creation of a Clinical Recommender System[ J]. Enterprise Information Systems ,2011,5 (2) : 169-181.
  • 5Duan Lian,Xu Lida, Guo Feng, et al. A Local-density Based Spatial Clustering Algorithm with Noise [ J ]. Information Systems ,2007,32 ( 7 ) :978-986.
  • 6Duan Lian,Xu Lida,Liu Ying,et al. Cluster-based Outlier Detection [J ]. Annals of Operations Research, 2009, 168(1) :151-168.
  • 7Liu Bin,Cao Shugui,He Wu. Distributed Data Mining for E-business[ J ]. Information Technology and Management, 2011,12(2) :67-79.
  • 8Zeng Li,Xu Lida, Shi Zhongzhi, et al. Distributed Com- puting Environment: Approaches and Applications[C]// Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Washington D. C., USA: IEEE Press, 2007:3240-3244.
  • 9Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters [ J ]. Communications of the ACM ,2008,51 ( 1 ) :107-113.
  • 10Wu Bihan ,Wu Gang ,Yang Mengdong. A Mapreduce Based Ant Colony Optimization Approach to Combinatorial Optimization Problems [ C ]//Proceedings of ICNC' 12. Washington D. C., USA: IEEE Press ,2012:728-732.

二级参考文献18

  • 1GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file system[C]//Proceedings of the 19th ACM Symposium on Operating Systems Principles. New York, N. Y. USA:ACM, 2003: 29-43.
  • 2DEAN J, GHEMAWAT S. MapReduce: simplified data pro- cessing on large clusters[C]//Proceedings of the 6th Symposi- um on Operating System Design and Implementation. Berke- ley, Cal. , USA:USENIX Association, 2004 :137-150.
  • 3COLORM A, DORIGO M, MANIEAAO V. Distributed opti- mization by ant colonies[C]//Proceedings of the 1st European Confrence on Artificial: Life. Amsterdam, the Netherlands: Elsevier, 1991 : 134-142.
  • 4DORIGO M. Optimization learning and nature algorithms[D]. Milano, Italy : Politecnico di Milano, 1992.
  • 5DEAN J, GHEMAWAT S. MapReduce: Simplified data pro- cessing on large clusters [J]. Communications of the ACM, 2005,51(1): 107-113.
  • 6Chu P, Beasley J. A Genetic Algorithm for the Multidimensional Knapsack Problem[J]. Journal of Heuristics, 1998, 4(1): 63-86.
  • 7Freville A. The Multidimensional 0-1 Knapsack Problem: An Overview[J]. European Journal of Operational Research, 2004, 155(1): 1-21.
  • 8Hanafi S, Wilbaut C. Scatter Search for the 0-1 Multidimensional Knapsack Problem[J]. Journal of Mathematical Modeling and Algorithms, 2008, 7(2): 143-159.
  • 9Leguizamon C, Michalewicz Z. A New Version of Ant System for Subset Problems[C]//Proc. of Congress on Evolutionary Computation. Piscataway, USA: Is. n.], 1999 1459-1464.
  • 10Ghemawat S, Gobioff H, Leung S T. The Google File System[C]//Proc. of the 19th ACM Symposium on Operating Systems Principles. New York, USA: ACM Press, 2003: 29-43.

共引文献28

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部