期刊文献+

基于AMP框架的小波域图像压缩重构 被引量:1

Wavelet Domain Image Compressive Reconstruction Based on AMP Framework
下载PDF
导出
摘要 针对压缩感知中的图像重构问题,基于近似消息传递(AMP)框架,提出一种新的图像压缩重构算法。该算法推导AMP框架在小波域下的系数迭代公式,证明AMP中滤波函数的操作对象是图像的小波系数,通过小波变换提高处理对象的稀疏度,并引入Wiener函数降低标量函数的求导复杂度。实验结果表明,与基于梯度投影的重构算法和正交匹配追踪算法相比,该算法具有较好的视觉效果和较高的重构精度。 This paper proposes a novel image compressive reconstruction algorithm based on Approximate Message Passing(AMP).The novel algorithm derives the formulation in wavelet domain under the AMP framework,and proves that the filter function effects are the wavelet coefficients of image.It uses the wavelet transformation to increase the sparsity of processing objects,and incorporates the Wiener function to decrease the computational complexity.Experimental results demonstrate that,compared with the reconstruction algorithm based on gradient projection and the orthogonal matching pursuit algorithm,the proposed method is realized easily and shows some advantage on both of reconstruction accuracy and visualization.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第8期223-226,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61301095) 黑龙江省自然科学基金资助项目(F201345)
关键词 图像重构 压缩感知 小波变换 近似消息传递框架 WIENER滤波 image reconstruction compressive sensing wavelet transformation Approximate Message Passing(AMP) framework Wiener filtering
  • 相关文献

参考文献12

  • 1Candes E, Wakin M. An Introduction to Compressive Sampling [ J ].IEEE Signal Processing Magazine, 2008, 25(2) :21-30.
  • 2焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 3Shen Yi, Li Bo, Pan Wenlei, et al. Analysis of Generalised Orthogona! Matching Pursuit UsingRestricted Isometry Constant [ J ]. Electronic Letters, 2014,50(14) :1020-1022.
  • 4殷爱菡,姜辉明,张清淼.改进OMP算法在人脸识别中的应用[J].计算机工程,2012,38(12):146-148. 被引量:3
  • 5Chen Shaobing, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit [ J ]. SIAM Review, 2001,43( 1 ) :129-159.
  • 6Mota J, Xavier J, Aguiar P, M. Basis Pursuit in Sensor Networks [ C ]//Proceedings of IEEE Conference on Acoustics,Speech,and Signal Processing. Washington D. C., USA : IEEE Press ,2011:2916-2919.
  • 7MotaJJ, Xavier P, Aguiar M P. Distributed Basis Pursuit [ J ]. IEEE Transactions on Signal Processing, 2012,60(4) :1942-1956.
  • 8Donoho D L, Maleki A, Montanari A. Message Passing Algorithms for Compressed Sensing: I. Motivation and Construction [ C]//Proceedings of IEEE Conference on Information Workshop. Washington D. C. , USA : IEEE Press ,2010 : 1-5.
  • 9Som S, Schniter P. Compressive Imaging Using Approximate Message Passing and a Markov-tree Prior[ J ]. IEEE Transactions on Signal Processing,2012, 60(7 ) :3439-3448.
  • 10Montanari A. Graphical Models Concepts in Compressed Sensing [ M ]. Cambridge, UK: Cambridge University Press, 2012.

二级参考文献118

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Gemmeke J,Hamme H,Cranen B,et al.Compressive Sensing forMissing Data Imputation in Noise Robust Speech Recognition[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(2):272-287.
  • 3Qiao Lishan,Chen Songcan,Tan Xiaoyang,et al.SparsityPreserving Projections with Applications to Face Recognition[J].Pattern Recognition,2010,4(2):331-341.
  • 4Wright J,Yang Y,Ganesh A,et al.Robust Face Recognition viaSparse Representation[J].Pattern Analysis and MachineIntelligence,2009,31(2):210-227.
  • 5Haupt J,Nowak R.Compressed Sampling for SignalDetection[C]//Proc.of IEEE International Conference onAcoustics,Speech,and Signal Processing.Honolulu,Hawaii,USA:[s.n.],2007:1509-1512.
  • 6Candes E.Compressive Sampling[C]//Proc.of the InternationalCongress of Mathematicians.Madrid,Spain:[s.n.],2006:1433-1452.
  • 7Donoho D.Compressive Sensing[J].IEEE Trans.on InformationTheory,2006,52(4):1289-1306.
  • 8Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate information [ J ]. Commu- nications on Pure and Applied Mathematics, 2006, 59(8) : 1207-1233.
  • 9Candes E, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction form highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006, 52 (2) : 489-509.
  • 10Donoho D. Compressed sensing[ J]. IEEE Trans on In- formation Theory, 2006, 52 (4) : 1289-1306.

共引文献324

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部