期刊文献+

基于TTFS编码的脉冲神经网络图像分割方法 被引量:2

Image Segmentation Method of Spiking Neural Network Based on TTFS Coding
下载PDF
导出
摘要 基于首脉冲触发时间编码策略,提出一种应用脉冲神经网络模型进行图像分割的方法。在输入层采用首脉冲触发时间编码策略将图像的像素值转换为神经元的脉冲发放时间,将编码结果以感受野为单位送入中间层,通过阈值电位控制神经元的脉冲发放,在输出层根据分割阈值将神经元的脉冲发放时间分成2类,输出分割结果,并使用最大Shannon熵准则分析感受野大小、阈值电位和分割阈值等参数的变化对图像分割结果的影响。通过对具有噪声的复杂图像进行分割,并与最大类间方差法和基于最大熵的脉冲耦合神经网络方法进行比较,实验结果表明,该方法对噪声图像的鲁棒性较强,能获得较好的分割结果。 Using the Time-to-first-spike(TTFS) coding strategy,a novel image segmentation method of spiking neural network model is proposed.The image pixel values are encoded into the spike timings of neurons in the input layer.The encoded results are delivered into the middle layer of spiking neural network through the different receptive fields,and spikes are triggered by a threshold condition.The spike timings of the neurons in the output layer are divided into two categories by the segmentation threshold.The corresponding image segmentation experiments show that the parameter changes of receptive filed size,threshold potential and segmentation threshold have significant impacts on the image segmentation result which is evaluated by the maximum Shannon entropy.Compared with the maximum between-cluster variance method and the pulse coupled neural network method based on maximum entropy,the proposed method has stronger robustness for image noise in image segmentation.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第8期227-232,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61165002) 甘肃省自然科学基金资助项目(1010RJZA019)
关键词 脉冲神经网络 最大Shannon熵 图像分割 感受野 编码策略 spiking neural network maximum Shannon entropy image segmentation receptive field coding strategy
  • 相关文献

参考文献21

  • 1Bohte S M. The Evidence for Neural Information Processing with Precise Spike-times: A Survey [ J ]. Natural Computing ,2004,3 ( 2 ) : 195-206.
  • 2Quiroga R Q,Panzeri S. Principles of Neural Coding[ M]. Boca Raton, USA : CRC Press ,2013.
  • 3Ghosh-Dastidar S, Adeli H. Spiking Neural Net- works[J]. International Journal of Neural Systems, 2009,19(4) :295-308.
  • 4Jose J T,Amudha J, Sanjay G. A Survey on Spiking Neural Networks in Image Processing[ M]//E1-Alfy E M, Thampi S M, Takagi H, et al. Advances in Intelligent Informatics. Berlin, Germany : Springer ,2015 : 107-115.
  • 5Ella H A, Al-Qaheri H, El-Dahshan E S A. Prostate Boundary Detection in Ultrasound Images Using Biologi- cally-inspired Spiking Neural Network [ J ]. Applied Soft Computing ,2011,11 ( 2 ) :2035-2041.
  • 6Meftah B, Lezoray O, Benyettou A. Segmentation and Edge Detection Based on Spiking Neural Network Model [ J ]. Neural Processing Letters, 2010,32 ( 2 ) : 131 - 146.
  • 7Wu Qingxiang, McGinnity T M, Maguire L, et al. Colour Image Segmentation Based on a Spiking Neural Network Model Inspired by the Visual System [ C ]//Proceedings of the 6th International Conference on Intelligent Computing. Berlin, Germany: Springer-Verlag, 2010: 49 -57.
  • 8Kerr D, Coleman S, McGinnity M, et al. Biologically Inspired Edge Detection [ C ]//Proceedings of the 1 lth International Conference on Intelligent Systems Design and Applications. Washington D. C. , USA : IEEE Press, 2011:802-807.
  • 9Chaturvedi S, Khurshid A A, Dorle S S. Reconfiguration of Spiking Neural Network for Optimization with Applications to Image Processing [ C ]//Proceedings of the 6th International Conference on Emerging Trends in Engineering and Technology. Washington D. C. , USA: IEEE Press,2013 : 191-192.
  • 10Wang Xiaowei, Wu Qingxiang, Zhang Zhenming, et al. Segmentation Based on Spiking Neural Network UsingColor Edge Gradient for Extraction of Corridor Floor[ C]//Proceedings of the 3rd International Con- ference on Multimedia Technology. Berlin, Germany: S pri n ger- Verlag, 2014 : 275 -285.

二级参考文献28

  • 1Lapicque L. Recherches quantitatives sur l'excitation electrique des nerfs triatee comme une polarization[ J ]. J Physiol Pathol Gen, 1907,9:620 - 635.
  • 2Hansel D,Mato G,Meunier C,Neltner L. On numerical simulations of integrate-and-fire neural networks[ J]. Neural Comput, 1998,10(2):467 - 483.
  • 3Senn W, Markram H,Tsodyks M.An algorithm for modifying neurotransmitter release probability based on preand postsynaptic spike timing[J] .Neural Comput, 2001,13( 1 ) :35 - 67.
  • 4Rotter S, Diesmann M. Exact digital simulation of time-invariant linear systems with applications to neuronal modeling[ J]. Biol Cybem, 1999,81(5/6) :381 - 402.
  • 5Shelly M J, Tao L. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks[ J ]. J Comput Neurosci.2001,11(2) : 111 - 119.
  • 6Morrison A, Straube S, Plesser H E, Diesmann M. Exact subthreshold integration with continuous spike times in discrete time neural network simulations [ J ]. Neural Comput, 2007, 19 (1):47-79.
  • 7Mattia M, Del Giudice P. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses[J]. Neural Comput,2000, 12(10) :2305 - 2329.
  • 8Delorme A, Thorpe S J. Spikenet: An event-driven simulation package for modeling large networks of spiking neurons [ J ]. Network: Comput Neural Syst,2003,14(4) :613 - 627.
  • 9Makino T. A discrete-event neural network simulator for general neuron models[ J ]. Neural Comput and Applic, 2003,11 (2) : 210 - 223.
  • 10Rudolph M, Destexhe A. Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies[ J] .Neural Comput,2006,18(9) :2146 - 2210.

共引文献11

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部