期刊文献+

HCRF和网络文本的精彩事件自动检测定位

Wonderful events automatic detection and location of the HCRF and webcast text
下载PDF
导出
摘要 利用隐条件随机场(HCRF)在表达和识别语义事件方面的强大功能,并结合网络直播文本信息,提出了一种新的精彩事件自动检测框架.首先,通过对网络直播文本进行分析处理,获得每种精彩事件对应的关键词组合;其次,对待检测的网络直播文本进行分类,获得每个精彩事件发生的时间标签;然后,构建用于提出的语义镜头标注的HCRF模型,实现多种语义镜头的同时标注,得到视频语义镜头标签序列;最后,结合多模态语义线索,在小规模训练样本的情况下,有效建立了精彩事件检测与定位的HCRF模型.文中基于视频底层特征、多模态语义线索及精彩语义事件之间的映射关系,从结构语义的多个维度挖掘了精彩事件的内在规律,准确实现了精彩事件的自动检测、定位与分割.实验结果证明了该模型的有效性. Based on the powerful function of the hidden conditional random fields ( HCRF) model in the expression and identification of semantic events and combining the webcast text information , a new framework for wonderful events automatic detection is put forward . Firstly , by analyzing and processing the webcast text , keyword combinations corresponding to each exciting event are obtained . Secondly , by classifying the webcast text to be detected , the happening time labels of each wonderful event are obtained . Thirdly , an HCRF model for semantic shot annotation is built to realize the semantic annotation of multiple types of semantic shots simultaneously , and the semantic shot sequence of the video clip is obtained . Finally , combining the multi‐modal semantic clues , an HCRF model for the wonderful events detection and localization is effectively built in the case of small‐scale training samples . Based on the mapping relationship among video low‐level features , the multi‐modal semantic clues and the wonderful semantic events , the inherent patterns of the wonderful events are excavated deeply in the multiple dimensions of the semantic structure , and then the wonderful events automatic detection , localization and segmentation are precisely achieved . Experiments show the effectiveness of this model .
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期81-87,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61072110) 陕西省重点难题攻关资助项目(2013KTZB03-03-03)
关键词 视频语义分析 事件检测 网络文本 隐条件随机场 语义镜头标注 video semantic analysis event detection webcast text hidden conditional random field (HCRF) semantic shots annotation
  • 相关文献

参考文献17

  • 1Kolekar M H. Bayesian Belief Network Based Broadcast Sports Video Indexing [J]. Multimedia Tools and Applications, 2011, 54(1): 27-54.
  • 2Cheng H Y, Weng C C, Chen Y Y. Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks [J]. IEEE Transactions on Image Processing, 2012, 21(4): 2152-2159.
  • 3Huang C L, Shih H C, Chao C Y. Semantic Analysis of Soccer Video Using Dynamic Bayesian Network [J]. IEEE Transactions on Multimedia, 2006, 8(4): 749-760.
  • 4Murty M N, Devi V S. Hidden Markov Models [M]. London: Springer, 2011: 103-122.
  • 5张玉珍,丁思捷,王建宇,戴跃伟,陈钱.基于HMM的融合多模态的事件检测[J].系统仿真学报,2012,24(8):1638-1642. 被引量:4
  • 6李英,田春娜,颜建强,庄怀宇,李相威.一种图像中的文字区域检测新方法[J].西安电子科技大学学报,2013,40(6):187-192. 被引量:6
  • 7Vilas N, Havin R. Entropy Features Trained Support Vector Machine Based Logo Detection Method for Replay Detection and Extraction from Sports Videos [J]. International Journal of Graphics and Multimedia, 2013, 4(1): 20-30.
  • 8Delaye A, Liu C L. Contextual Text/Non-text Stroke Classification in Online Handwritten Notes with Conditional Random Fields [J]. Pattern Recognition, 2014, 47(3): 959-968.
  • 9Shyu M L, Xie Z X, Chen M, et al. Video Semantic Event/Concept Detection Using a Subspace-based Multimedia Data Mining Framework [J]. IEEE Transactions on Multimedia, 2008, 10(2): 252-259.
  • 10Tjondronegoro D W, Chen Y P P. Knowledge-discounted Event Detection in Sports Video [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40(5): 1009-1024.

二级参考文献34

  • 1彭培华,曲波,陈荣胜.基于支持向量机的小波域视频字幕检测与提取[J].华南理工大学学报(自然科学版),2004,32(z1):63-66. 被引量:4
  • 2刘宇驰,吴玲达.基于HMM的足球视频语义结构分析[J].计算机工程与应用,2006,42(28):174-176. 被引量:1
  • 3刘宇驰,栾悉道,戴端辉,吴玲达.多模态体育视频语义分析[J].计算机科学,2007,34(1):109-111. 被引量:6
  • 4金国英,陶霖密,徐光,张翔.基于HHMM的多线索融合和事件推理方法[J].清华大学学报(自然科学版),2007,47(1):112-115. 被引量:4
  • 5李雪妍,郭树旭,郜峰利.基于小波模极大值的视频文本区域的提取[J].计算机工程,2007,33(5):26-28. 被引量:4
  • 6J Y Chen, Y H Li, L D Wu, S Y Lao. Semantic event detection in soccer video by integrating multi-features using Bayesian network [C]// Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speed Proceeding, 2004, Oct.
  • 7Y Yang, S X Lin, Y D Zhang, et al. Highlights extraction in soccer avideos based on goal_mouth detection [C]//IEEE Proc. ISSPA 2007. USA: IEEE, 2007: 1-4.
  • 8Lavee G, Rivlin E, Rudzsky M. Understanding video events a survey of methods for automatic interpretation of semantic occurrence in video[J].IEEE Trans on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39 (5) : 489-504.
  • 9Shih H C, Huang Chunglin. MSN: Statistical understanding of broadcasted baseball video using multi-level semantic network [J]. IEEE Trans on Broadcasting, 2005, 51 (4): 449-459.
  • 10Hung M H, Hsieh C H. Event detection of broadcast baseball videos [J]. IEEE Trans on Circuits and Systems for Video Technology, 2008, 18(12): 1713-1726.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部