期刊文献+

复杂场景下声频传感器网络核稀疏表示车辆识别 被引量:7

Vehicle recognition using acoustic sensor networks in complex scenes via kernel sparse representation
下载PDF
导出
摘要 提出一种基于核稀疏表示的声频传感器网络车辆识别方法.首先利用Mel频率倒谱系数提取车辆声音特征;然后采用核方法将其投影到高维特征空间以实现线性可分,将线性稀疏表示扩展到核域空间,构建过完备字典,求解核稀疏最优化问题对目标车辆进行分类.实验验证了该算法在声频数据集结构复杂的情况下,能有效地识别目标车辆,与传统的声频目标分类算法相比,提高了识别的准确率. This paper proposes a method of vehicle recognition via kernel sparse representation using acoustic sensor networks in complex scenes . This algorithm uses the Mel frequency cepstral coefficients to extract the acoustic features of vehicles and maps them into a high‐dimensional feature space with a kernel function to get linearly separable samples . After extending sparse representation to the kernel space and constructing the over‐complete dictionary , the objective vehicles will be recognized by solving the optimization problem . Experiments show that the proposed algorithm gives good performance on vehicle recognition under the circumstance of complex data sets . Compared with other traditional acoustic classification algorithms , the method improves the precision of recognition .
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期114-120,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61301027 61375015 11274226) 浙江省自然科学基金资助项目(LY14F030007)
关键词 核稀疏表示 Mel 频率倒谱系数 车辆识别 复杂场景 传感器网络 kernel sparse representation Mel frequency cepstral coefficients vehicle recognition complex scenes sensor networks
  • 相关文献

参考文献22

  • 1肖汉光,蔡从中,廖克俊.利用声波和地震波识别军事车辆类型[J].系统工程理论与实践,2006,26(4):108-113. 被引量:7
  • 2刘桂林,孔祥维,刘航.基于无线传感器网络的车辆检测识别算法研究[J].传感器与微系统,2010,29(2):9-12. 被引量:9
  • 3Li D, Wong K D, Hu Y H, et al. Detection, Classification and Tracking of Targets in Distributed Sensor Networks [J]. IEEE Signal Processing Magazine, 2002, 19: 11-29.
  • 4Duarte M F, Hu Y H. Vehicle Classification in Distributed Sensor Networks [J]. Journal of Parallel and Distributed Computing, 2004, 64(7): 826-838.
  • 5Ghasemzadeh H, Jafari R. Physical Movement Monitoring Using Body Sensor Networks: a Phonological Approach to Construct Spatial Decision Trees [J]. IEEE Transactions on Industrial Informatics, 2011, 7(1): 66-77.
  • 6Wang Z L, Jiang M, Hu Y H, et al. An Incremental Learning Method Based on Probabilistic Neural Networks and Adjustable Fuzzy Clustering for Human Activity Recognition by Using Wearable Sensors [J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 691-699.
  • 7Wright J, Yang A Y, Ganesh A. Robust face Recognition via Sparse Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8Obozinski G, Taskar B, Jordan M I. Joint Covariate Selection and Joint Subspace Selection for Multiple Classification Problems [J]. Statistics and Computing, 2010, 20(2): 231-252.
  • 9Lu C Y, Min H, Gui J, et al. Face Recognition via Weighted Sparse Representation [J]. Journal of Visual Communication and Image Representation, 2013, 24(2): 111-116.
  • 10Kumar A, Chan T S T. Robust Ear Identification Using Sparse Representation of Local Texture Descriptors [J]. Pattern Recognition, 2013, 46(1): 73-85.

二级参考文献55

  • 1国雁萌,付强,颜永红.复杂噪声环境中的语音端点检测[J].声学学报,2006,31(6):549-554. 被引量:17
  • 2Wu H, Mendel J. Multicategory classification of ground vehicles based on their acoustic emissions [ C ]// Procof SPIE in Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications Ⅵ 5417, 2004:31 -42.
  • 3William P E, Hoffman M W. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions[ C ]// Unattended Ground, Sea, and Air Sensor Technologies and Applications X, Proc. of SPIE,2008 : 1 -12.
  • 4Duarte M F, Hu Y H. Vehicle classification in distributed sensor networks [ J ]. Journal of Parallel and Distributed Computing, 2004,64 ( 7 ) :826 -838.
  • 5Gramann R A, Bennett M B, O' Brien T D. Vehicle and personnel detection using seismic sensors [ C ] // Sensors, C^3 I, Information, and Training Technologies for Law Enforcement,1998:74-85.
  • 6Wellman M C, Srour N, Hills D B. Feature extraction and fusion of acoustic and seismic for target identification[ C ]//Peace and Wartime Applications and Technical Issues for Unattended Ground Sensors, 1997 : 139 -145.
  • 7Wang Hongliang, Wang Yang, Zhang Wendong, et al. Feature extraction of acoustic signal based on wavelet analysis [ C ]//Embedded Software and Systems Symposia,2008:437-440.
  • 8Georgios P, John N. Vehicle classification in sensor networks using time-domain signal processing and neural networks [ J ]. Microprocessors and Microsystems,2007(31 ) :381 -392.
  • 9Duarte M F. Research results[ DB/OL]. [2003-01-28]. http:// www. ece. wisc. edu/ -sensit.
  • 10边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,1999:296-304.

共引文献27

同被引文献39

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部