期刊文献+

静磁场对猪胰脏脂肪酶催化活性和结构的影响研究 被引量:1

Influence of Static Magnetic Field on the Catalytic Activity and Structure of Lipase from Porcine Pancreas
下载PDF
导出
摘要 将来源于猪胰脏的脂肪酶置于0.45 T强度的静磁场中,在不同温度、不同p H值条件下测定脂肪酶的催化活性,并且对米氏常数、酶蛋白二次结构进行测定,探索低成本方法以提高生物酶的催化活性.实验发现,在磁场存在的情况下,磁化2 h后的脂肪酶的催化活性明显提高.脂肪酶的最佳反应温度和最佳p H值没有因为磁化处理而改变.米氏常数Km和酶促反应最大速度Vmax均发生变化,磁化处理后的酶催化效率高于空白对照组.脂肪酶的构象在经过磁场处理后发生明显变化. It was highly interest to tune the catalytic activity of enzymes in a convenient and low cost means. Herein, lipase was studied in the presence and absence of a 0.45 T static magnetic field.Enzymatic activities at varied exposure time, pH and temperature were assessed, together with the kinetic parameters of the cataly-sis and the secondary conformation.In the presence of the static magnetic field, the optimal exposure time is 2 h at which enhanced activity was observed while the optimal pH and temperature forthe catalytic reaction are unchanged.The Km decreased and Vmax also increased.Such behavior could be explained by the slight struc-ture change induced by the magnetic field as revealed by circular dichroism.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2015年第2期117-120,共4页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 贵州省科学技术联合基金重点项目(黔科合LH字[2014]7357号) 贵州省科学技术基金计划项目(黔科合J字[2014]2086号) 贵州理工学院博士基金资助项目(XJGC20140604)
关键词 脂肪酶 酶活性 构象 磁化处理 lipase enzymatic activity conformation magnetization treatment
  • 相关文献

参考文献12

  • 1Schmid R D, Verger R. Lipases: interfacial enzymes with attractive applications[J]. Angew Chem Int Ed, 1998, 37 (12) : 1609-1633.
  • 2Gupta R, Gupta N, Rathi P. Bacterial hpases : an overview of production, purification and biochemical properties [ J ]. Appl Microbiol Biotechnol, 2004, 64 (6) :763 - 781.
  • 3Ong A L, Kamaruddin A H, Bhatia S, et al. Performance of free Candida antarctica lipase B in the enantioselective esteri- fication of ketoprofen[J]. Enzyme Microb Technol, 2006, 39(4): 924-929.
  • 4Chang S W, Shaw J F, Yang K H, et al. Studies of optimum conditions for covalent immobilization of Candida rugosa li- pase on poly( gammaglutamic acid) by RSM [ J ]. Bioresour Technol, 2008, 99 (8) : 2800 - 2805.
  • 5Ramani K, Lourdusamy J K, Chandran V, et al. Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive [ J] . J MOl Catal B: Enzym, 2010, 62 (1) :58 -65.
  • 6Rezaei K, Temelli F. Lipase catalyzed hydrolysis of canola oil in supercritical CO2 [ J ]. J Am Oil Chem Soc, 2000, 77 (8) : 903 -909.
  • 7Yadav G D, Borkar I V. Kinetic and mechanistic investigation of mierowaveassisted lipase catalyzed synthesis of citronellyl acetate[J]. Ind Eng Chem Res, 2009, 48 (17) :7915 -7922.
  • 8Portaecio M, De Luca P, Durante D. In vitro studies of the influence of ELF electromagnetic fields on the activity of solu- ble and insoluble peroxidase [ J ]. Bioeleetromagnetics, 2003, 24 ( 7 ) : 449 - 456.
  • 9Blank M, Soo L. Enhancement of cytochrome oxidase activity in 60 Hz magnetic fields [ J ]. Bioelectrochem Bioenerg, 1998, 45(2) :253 -259.
  • 10Ran J Y, Jia S Y, Liu Y, et al. Characterization of cellulase under various intensities of static magnetic fields [ J ]. Catal Commun, 2009, 11(2) :91 -95.

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部