期刊文献+

柔性温度压力仿生皮肤的模块化设计与实现 被引量:14

Modular Design and Implementation of Flexible Artificial Skin with Temperature and Pressure Sensors
原文传递
导出
摘要 为实现电子仿生皮肤的模块化设计,以石墨烯纳米片制备薄膜温敏传感器,同时,以炭黑/硅橡胶复合材料为弹性电介质、有机硅导电银胶为柔性上极板设计电容式力敏传感器,在此基础上,以聚酰亚胺为柔性基体,提出一种可用作智能机器人仿生皮肤的全柔性温度/压力触觉传感器,并设计成具有可拼接特点的模块化阵列结构.介绍柔性温度/压力触觉传感器的结构设计、检测机理以及信号采集与处理系统.通过温度、压力及温度/压力复合感知实验表明,该柔性温度/压力复合式触觉传感阵列及信号提取系统可实现触觉感知功能,为可穿戴式人工皮肤的研究提供了一种设计方案. To achieve the modular design of electronic artificial skin, a fully compliant temperature and pressure tactile sensor is designed and used as artificial skin of intelligent robots, which is assembled into a modularized array structure with expandable characteristics. Taking graphene nanoplatelets (GNPs) as the temperature-sensitive material of the sensor, carbon black (CB) filled silicone rubber (SR) as the elastic dielectric, and the silver conductive silicone rubber as the flexible top plate, a capacitive pressure sensitive cell is designed, and the temperature and pressure sensor array is constructed with polyimide (PI) film as the flexible substrate. The structure design, working principle and the signal acquisition and processing system of the flexible temperature/pressure tactile sensor array are introduced. The experimental results of temperature, pressure and the compound perception indicate that the flexible temperature/pressure multifunctional tactile sensor array and the signal extraction system can realize tactile perception, and it provides a design scheme for wearable artificial skin.
出处 《机器人》 EI CSCD 北大核心 2015年第4期493-498,共6页 Robot
基金 国家自然科学基金资助项目(61471155 61401141) 安徽省自然科学基金资助项目(1508085QF115)
关键词 电子皮肤 模块化 全柔性 可拼接式阵列 传感信息处理 触觉传感器 electronic skin modularization fully compliant expandable array sensing information processing tactile sensor
  • 相关文献

参考文献3

二级参考文献71

  • 1Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with or- ganic transistor active matrixes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12321-12325.
  • 2Engel J, Chen N, Tucker C, et al. Flexible multimodal tactile sensing system for object identification[C]//5th IEEE Confer- ence on Sensors. Piscataway, NJ, USA: IEEE, 2006: 563-566.
  • 3Wang L H, Ding T H, Wang R Research on stress and electrical resistance of skin-sensing silicone rubber/carbon black nanocomposite during decornpressive stress relaxation[J]. Smart Materials and Structures, 2009, 18(6): 1-7.
  • 4Weiss K, Worn H. The working principle of resistive tactile sen- sor cells[C]//IEEE International Conference on Mechatronics & Automation. Piscataway, NJ, USA: IEEE, 2005:471-476.
  • 5Pecora A, Zampetti E, Pantalei S, et al. Interdigitated sensorial system on flexible substrate[C]//IEEE Conference on Sensors. Piscataway, NJ, USA: IEEE, 2008: 21-24.
  • 6Ochoteco E, Pomposo J A, Sikora T, et al. All-plastic distributed pressure sensors: Taylor-made performance by electroactive materials design[J]. Microsystems Technologies, 2008, 14(8): 1089-1097.
  • 7Noda K, Hoshino K, Matsumoto K, et al. A shear stress sen- sor for tactile sensing with the piezoresistive cantilever standing in elastic material[J]. Sensors and Actuators A: Physical, 2006, 127(2): 295-301.
  • 8Knite M, Tupureina V, Fuith A, et al. Polyisoprene - multi-wall carbon nanotube composites for sensing strain[J]. Materials Sci- ence and Engineering: C, 2007, 27(5-8): 1125-1128.
  • 9Wisitsoraat A, Patthanasetakul V, Lomas T, et al. Low cost thin film based piezoresistive MEMS tactile sensor[J]. Sensors and Actuators A: Physical, 2007, 139(1/2): 17-22.
  • 10Huang Y, Ming X H, Xiang B, et al. Two types of flexible tactile sensor arrays of robot for three-dimension force based on piezoresistive effects[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2009: 1032-1037.

共引文献52

同被引文献123

引证文献14

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部