期刊文献+

基于五块模式的单一矩形件排样算法 被引量:6

Algorithm for Generating Five Block Mode Cutting Patterns of Single Rectangular Items
下载PDF
导出
摘要 如何在一个大矩形里排入尽可能多的单一规格小矩形件是广泛出现在制造业领域的板材分割、物流业领域的集装箱装载中的问题。采用五块模式将大矩形划分为五个块,求解每个块里面矩形件的排样方式。首先,采用动态规划算法一次性生成所有块中矩形件排样方式,然后,采用隐式枚举法考虑所有可能的五块组合,选择包含矩形件个数最多的五块组合作为最终的排样方案。使用算例对算法进行了测试,并与另外4种单一排样算法进行了比较。实验结果表明,该算法在排样利用率和切割工艺两方面都有效,而且计算时间合理。 It is widely appears in manufacturing fieldfield of pallet loading that how to finding a maximalof plate segmentation and the logistics industrylayout for identical small rectangles on a largerrectangle. The large rectangle is divided into five blocks using five-block mode, then the problem issolved to arrange the identical small rectangular into each blocks. Firstly, the dynamic programmingmethod is used to generate the entire layout of rectangular in blocks in once. Then, the enumerationmethod is used to consider all of five blocks combination. The combination is selected to generate thefinal pattern which have the maximal number of rectangular. Several examples are used to test theproposed algorithm, and comparing the algorithm with other 4 kinds of single layout algorithm. Theexperimental results show that the algorithm is efficient in both the layout utilization rate and thecutting process with a reasonable computing time.
出处 《图学学报》 CSCD 北大核心 2015年第4期521-525,共5页 Journal of Graphics
基金 国家自然科学基金资助项目(61363026 71371058) 广西高等教育教学改革工程重点资助项目(2013JGZ110)
关键词 矩形排样问题 动态规划算法 隐枚举 五块模式 rectangle packing problem dynamic programming algorithm implicit enumeration fiveblock mode
  • 相关文献

参考文献12

  • 1Birgin E G, Lobato R D, Morabito R. An effectiverecursive partitioning approach for the packing of identical rectangles in a rectangle [J]. Journal of the Operational Research Society, 2010, 61(2): 306-320.
  • 2Scheithauer G, Terno J. The G4-heuristic for the pallet loading problem [J]. Journal of the Operational Research Society, 1996, 47(4): 511-522.
  • 3Wscher G, HauBner H, Schumann H. An improved typology of cutting and packing problems [J]. European Journal of Operational Research, 2007, 183(3): 1109-1130.
  • 4Lu Yiping, Cha Jianzhong. A fast algorithm for identifying minimum size instances of the equivalence classes of the pallet loading problem [J]. European Journal of Operational Research, 2014, 237(3): 794-801.
  • 5Letchford A N, Amaral A. Analysis of upper bounds for the pallet loading problem [J]. European Journal of Operational Research, 2001, 132(3): 582-593.
  • 6Agrawal P K. Minimising trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guill otine cuts [J]. European Journal of Operational Research, 1993, 64(3): 410-422.
  • 7潘卫平,陈秋莲,崔耀东,陈怡丹.基于匀质条带的矩形件最优三块布局算法[J].图学学报,2015,36(1):7-11. 被引量:27
  • 8崔耀东,周儒荣,等.冲裁件有约束最优剪切方式的设计[J].数学的实践与认识,2001,31(2):177-184. 被引量:4
  • 9Bischoff E, Dowsland W B. An application of the micro to product design and distribution [J]. Journal of the Operational Research Society, 1982, 33(3): 271-280.
  • 10季君,陆一平,查建中,崔耀东,王金敏.生成矩形毛坯最优两段排样方式的确定型算法[J].计算机学报,2012,35(1):183-191. 被引量:24

二级参考文献32

  • 1崔耀东.生成矩形毛坯最优T形排样方式的递归算法[J].计算机辅助设计与图形学学报,2006,18(1):125-127. 被引量:22
  • 2崔耀东,季君,曾窕俊.生成矩形毛坯最优两段排样方式的递归算法[J].南京航空航天大学学报,2006,38(1):111-114. 被引量:9
  • 3黄文奇,刘景发.基于欧氏距离的矩形Packing问题的确定性启发式求解算法[J].计算机学报,2006,29(5):734-739. 被引量:26
  • 4崔耀东,黄健民,张显全.矩形毛料无约束二维剪切排样的递归算法[J].计算机辅助设计与图形学学报,2006,18(7):948-951. 被引量:15
  • 5G Wascher, H Hanssner, H Schumann. An improved typology of cutting and packing problems [ J ]. European Journal of Operational Research, 2007,183 (3) : 1109 - 1130.
  • 6Y Cui, R Zhou. Generating optimal cutting patterns for rectangular blanks of a single size[J]. Journal of the Operational Research Society, 2002,53 (12) : 1338 - 1346.
  • 7G Young - Gun, K Malng - Kyu. A fast algorithm for two - dimensional pallet loading problems of large size [ J ]. European Journal of Operational Research, 2001,134 ( 1 ) : 193 - 202.
  • 8G H A Martins, R F Dell. Solving the pallet loading problem[J]. European Journal of Operational Research, 2008,184 ( 2 ) : 429 - 440.
  • 9A GTamowski, J Temo, G Scheithauer. A polynomial time algorithm for the guillotine pallet - loading problem [ J ]. Information Systems and Operational Research, 1994,32 ( 4 ) : 275 - 287.
  • 10M Z Arslanov. Continued fractions in optimal cutting of a rectangular sheet into equal small rectangles [ J ]. European Journal of Operational Research, 2000,125 (2) :239 - 248.

共引文献54

同被引文献33

  • 1杨传民,王树人,王心宇.基于4块结构的斩断切割布局启发性算法[J].机械设计,2007,24(2):25-26. 被引量:9
  • 2郭俐,崔耀东.有约束单一尺寸矩形毛坯最优排样的拼合算法[J].农业机械学报,2007,38(10):140-144. 被引量:7
  • 3Lodi A, Martello S, Vigo D. Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems [J]. INFORMS Journal on Computing, 1999, 11(4): 345-357.
  • 4Wascher G, HauBner H, Schumann H. An improved typology of cutting and packing problems [J]. European Journal of Operational Research, 2007, 183(3): 1109-1130.
  • 5Fekete S P, Schepers J. A general framework for bounds for higher dimensional orthogonal packing problems [J]. Mathematical Methods of Operations Research, 2004, 60(2): 311-329.
  • 6Clautiaux F, Jouglet A, Hayek J E. A new lower bound for the non-oriented two-dimensional bin-packing problem [J]. Operations Research Letters, 2007, 35(3): 365-373.
  • 7Lodi A, Martello S, Vigo D. Recent advances on two-dimensional bin packing problems [J]. Discrete Applied Mathematics, 2002, 123(1-3): 296-379.
  • 8Polyakovsky S, M'Hallah R. An agent-based approach to the two-dimensional guillotine bin packing problem [J]. European Journal of Operational Research, 2009, 192(3): 767-781.
  • 9Charalambous C, Fleszar K. A constructive bin-oriented heuristic for the two-dimensional bin packing problem with guillotine cuts [J]. Computers & Operations Research, 2011, 38(10): 1443-1451.
  • 10Fleszar K. Three insertion heuristics and a justification improvement heuristic for two-dimensional bin packing with guillotine cuts [J]. Computers & Operations Research, 2013, 40(1): 463-474.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部